Very low-dimensional latent semantic indexing for local query regions

被引:0
作者
机构
[1] Xu, Yinghui
[2] Umemura, Kyoji
来源
| / Association for Computational Linguistics (ACL)期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we focus on performing LSI on very low SVD dimensions. The results show that there is a nearly linear surface in the local query region. Using low-dimensional LSI on local query region we can capture such a linear surface, obtain much better performance than VSM and come comparably to global LSI. The surprisingly small requirements of the SVD dimension resolve the computation restrictions. Moreover, on the condition that several relevant sample documents are available, application of low-dimensional LSI to these documents yielded comparable IR performance to local RF but in a different manner. © 2003 International Workshop on Information Retrieval with Asian Languages.
引用
收藏
相关论文
共 50 条
  • [1] Query Filtering with Low-Dimensional Local Embeddings
    Chavez, Edgar
    Connor, Richard
    Vadicamo, Lucia
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2019), 2019, 11807 : 233 - 246
  • [2] Optimal local dimension analysis of latent semantic indexing on query neighbor space
    Xu, YH
    Umemura, K
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (09) : 1762 - 1772
  • [3] Improving text classification using local latent semantic indexing
    Liu, T
    Chen, H
    Zhang, BY
    Ma, WY
    Wu, GY
    FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 162 - 169
  • [4] Improved query matching using kd-trees: A latent semantic indexing enhancement
    Hughey M.K.
    Berry M.W.
    Information Retrieval, 2000, 2 (4): : 287 - 302
  • [5] Lifting low-dimensional local systems
    Charles De Clercq
    Mathieu Florence
    Mathematische Zeitschrift, 2022, 300 : 125 - 138
  • [6] Lifting low-dimensional local systems
    De Clercq, Charles
    Florence, Mathieu
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 125 - 138
  • [7] Query expansion and dimensionality reduction: Notions of optimality in Rocchio relevance feedback and latent semantic indexing
    Efron, Miles
    INFORMATION PROCESSING & MANAGEMENT, 2008, 44 (01) : 163 - 180
  • [8] Learning Low-Dimensional Temporal Representations with Latent Alignments
    Su, Bing
    Wu, Ying
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (11) : 2842 - 2857
  • [9] Dimension reduction of latent semantic indexing extracting from local feature space
    Department of Computer Science and Engineering, Dalian University of Technology, Dalian 116023, China
    J. Comput. Inf. Syst., 2008, 3 (915-922):
  • [10] Different Ventricular Fibrillation Types in Low-Dimensional Latent Spaces
    Onate, Carlos Paul Bernal
    Meseguer, Francisco-Manuel Melgarejo
    Carrera, Enrique V.
    Munoz, Juan Jose Sanchez
    Alberola, Arcadi Garcia
    Alvarez, Jose Luis Rojo
    SENSORS, 2023, 23 (05)