Second hyperpolarizabilities of 1-center radicals

被引:0
|
作者
Osaka Univ, Osaka, Japan [1 ]
机构
来源
Synth Met | / 1 -3 pt 2卷 / 1554-1555期
关键词
Charged particles - Electron resonance - Electronic structure - Ground state - Molecules - Nonlinear optics;
D O I
暂无
中图分类号
学科分类号
摘要
We study the second hyperpolarizabilities (γ) for 1-center radicals, i.e., BH3-, CH3 and NH3+. It is found that magnitudes of γ(|γ|) of the radicals are sensitively influenced by features of each charged state. It is also found that electron-correlation dependence of γ can be related to the resonance structure contributing to the ground state of the molecules
引用
收藏
相关论文
共 50 条
  • [41] A cooperative location game based on the 1-center location problem
    Puerto, Justo
    Tamir, Arie
    Perea, Federico
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 214 (02) : 317 - 330
  • [42] Inverse 1-center location problems with edge length augmentation on trees
    Behrooz Alizadeh
    Rainer E. Burkard
    Ulrich Pferschy
    Computing, 2009, 86 : 331 - 343
  • [43] GENERAL 1-CENTER 2-ELECTRON INTEGRALS FOR LAGUERRE FUNCTIONS
    BROWNE, JC
    MILLER, J
    JOURNAL OF CHEMICAL PHYSICS, 1962, 36 (09): : 2324 - &
  • [44] Upgrading the 1-center problem with edge length variables on a tree
    Sepasian, Ali Reza
    DISCRETE OPTIMIZATION, 2018, 29 : 1 - 17
  • [45] Robust reverse 1-center problems on trees with interval costs
    Tayyebi, Javad
    Nguyen, Kien Trung
    OPTIMIZATION METHODS & SOFTWARE, 2024, 39 (06): : 1383 - 1406
  • [46] GENERAL SOLUTION FOR 1-CENTER ZERO-FIELD-SPLITTING INTEGRALS
    LOUNSBUR.JB
    BARRY, GW
    JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (12): : 4367 - &
  • [47] New approaches to the robust 1-center location problems on tree networks
    Ghomi, Soudabeh Seyyedi
    Baroughi, Fahimeh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [48] New approaches to the robust 1-center location problems on tree networks
    Soudabeh Seyyedi Ghomi
    Fahimeh Baroughi
    Computational and Applied Mathematics, 2022, 41
  • [49] 1-CENTER AND 2-CENTER (COULOMBIC) INTEGRALS WITH DOUBLE-ZETA FUNCTION
    AZMAN, A
    ZAKRAJSE.E
    ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1968, A 23 (06): : 940 - &
  • [50] Improved Algorithms for the Minmax-Regret 1-Center and 1-Median Problems
    Yu, Hung-I.
    Lin, Tzu-Chin
    Wang, Biing-Feng
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (03)