Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm

被引:0
|
作者
Dept. Interuniversitari d'Optica, Universitat de València, Calle Dr. Moliner 50, 46100 Burjassot, Spain [1 ]
不详 [2 ]
机构
来源
Appl. Opt. | / 35卷 / 7013-7018期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT are discussed. © 1996 Optical Society of America.
引用
收藏
相关论文
共 50 条
  • [21] Use of fast-Fourier-transform computational methods in radiation transport
    Ritchie, B
    Dykema, PG
    Braddy, D
    PHYSICAL REVIEW E, 1997, 56 (02): : 2217 - 2227
  • [22] On a Fast Algorithm for Computing the Fourier Transform
    A. A. Aleksashkina
    A. N. Kostromin
    Yu. V. Nesterenko
    Moscow University Mathematics Bulletin, 2021, 76 : 123 - 128
  • [23] An improved fast Fourier transform algorithm
    Mieee, GB
    Chen, YQ
    ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 1308 - 1310
  • [24] FAST FOURIER TRANSFORM ALGORITHM.
    Cabion, P.J.
    Transactions of the South African Institute of Electrical Engineers, 1980, 71 (pt 5): : 112 - 116
  • [25] On a Fast Algorithm for Computing the Fourier Transform
    Aleksashkina, A. A.
    Kostromin, A. N.
    Nesterenko, Yu, V
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2021, 76 (03) : 123 - 128
  • [26] CALCULATION OF EIGENFUNCTIONS OF A BOUNDED FRACTIONAL FOURIER TRANSFORM
    Kirilenko, M. S.
    Zubtsov, R. O.
    Khonina, S. N.
    COMPUTER OPTICS, 2015, 39 (03) : 332 - 338
  • [27] Calculation of discrete fractional Fourier transform based on adaptive LMS algorithm
    Zhu, Yaqiong
    Qi, Lin
    Yang, Shouyi
    Mu, Xiaomin
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 330 - +
  • [28] Accuracy of the discrete Fourier transform and the fast Fourier transform
    Schatzman, JC
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05): : 1150 - 1166
  • [29] EFFICIENT HARD-WIRED DIGITAL FAST-FOURIER-TRANSFORM PROCESSOR
    RISK, RJ
    ELECTRONICS LETTERS, 1977, 13 (16) : 458 - 459
  • [30] A NEW FORMULATION OF THE FAST FRACTIONAL FOURIER TRANSFORM
    Campos, Rafael G.
    Rico-Melgoza, J.
    Chavez, Edgar
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A1110 - A1125