The sufficient conditions for the existence of fractional factors graphs

被引:0
作者
Li, Jian-Xing [1 ]
Deng, Han-Yuan [2 ]
机构
[1] Department of Mathematics, Xiangtan Polytechnic University, Xiangtan 411201, China
[2] Department of Mathematics, Math. and Computer Science College, Hunan Normal University, Changsha 410081, China
来源
Journal of Natural Science of Hunan Normal University | 2003年 / 26卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Graph theory
引用
收藏
页码:25 / 28
相关论文
共 50 条
[31]   A note on the existence of fractional f-factors in random graphs [J].
Jian-sheng Cai ;
Xiao-yang Wang ;
Gui-ying Yan .
Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 :677-680
[32]   Existence of all generalized fractional (g, f)-factors of graphs [J].
Egawa, Yoshimi ;
Kano, Mikio ;
Yokota, Maho .
DISCRETE APPLIED MATHEMATICS, 2020, 283 :265-271
[33]   A Note on the Existence of Fractional f-factors in Random Graphs [J].
Cai, Jian-sheng ;
Wang, Xiao-yang ;
Yan, Gui-ying .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03) :677-680
[34]   Sufficient conditions for the existence of path-factors with given properties [J].
Qin, Hui ;
Dai, Guowei ;
Chen, Yuan ;
Jin, Ting ;
Yuan, Yuan .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2025, 22 (01) :79-84
[36]   Fractional Factors, Component Factors and Isolated Vertex Conditions in Graphs [J].
Kano, Mikio ;
Lu, Hongliang ;
Yu, Qinglin .
ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04)
[37]   Sufficient conditions for the existence of spanning colored trees in edge-colored graphs [J].
Agueda, R. ;
Borozan, V. ;
Manoussakis, Y. ;
Mendy, G. ;
Muthu, R. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2694-2699
[38]   Two sufficient conditions for odd [1, b]-factors in graphs [J].
Zhou, Sizhong ;
Liu, Hongxia .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 661 :149-162
[39]   Sufficient conditions for k-factors and spanning trees of graphs [J].
Ao, Guoyan ;
Liu, Ruifang ;
Yuan, Jinjiang ;
Ng, C. T. ;
Cheng, T. C. E. .
DISCRETE APPLIED MATHEMATICS, 2025, 372 :124-135
[40]   Some sufficient conditions for graphs to have (g,f)-factors [J].
Zhou, Sizhong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 75 (03) :447-452