Explicit and weakly implicit schemes for a class of generalized KdV equation

被引:0
|
作者
Department of Mathematics, Tianjin Normal University, Tianjin 300074, China [1 ]
机构
关键词
D O I
10.1016/S1007-5704(98)90014-4
中图分类号
学科分类号
摘要
2
引用
收藏
页码:187 / 189
相关论文
共 50 条
  • [21] Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
    Václav Kučera
    Mária Lukáčová-Medvid’ová
    Sebastian Noelle
    Jochen Schütz
    Numerische Mathematik, 2022, 150 : 79 - 103
  • [22] ON A CLASS OF IMPLICIT AND EXPLICIT SCHEMES OF VANLEER TYPE FOR SCALAR CONSERVATION-LAWS
    CHALABI, A
    VILA, JP
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1989, 23 (02): : 261 - 282
  • [23] Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation
    Fu-li Qu
    Wen-qia Wang
    Applied Mathematics and Mechanics, 2007, 28 : 973 - 980
  • [24] Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
    Kucera, Vaclav
    Lukacova-Medvid'ova, Maria
    Noelle, Sebastian
    Schuetz, Jochen
    NUMERISCHE MATHEMATIK, 2022, 150 (01) : 79 - 103
  • [25] Geometric numerical schemes for the KdV equation
    Dutykh, D.
    Chhay, M.
    Fedele, F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 221 - 236
  • [26] On symplectic and multisymplectic schemes for the KdV equation
    Ascher, UM
    McLachlan, RI
    JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (01) : 83 - 104
  • [27] Geometric numerical schemes for the KdV equation
    D. Dutykh
    M. Chhay
    F. Fedele
    Computational Mathematics and Mathematical Physics, 2013, 53 : 221 - 236
  • [28] On symplectic and multisymplectic schemes for the KdV equation
    Ascher, U.M.
    McLachlan, R.I.
    Journal of Scientific Computing, 2005, 25 (1-2) : 83 - 104
  • [29] On Symplectic and Multisymplectic Schemes for the KdV Equation
    U. M. Ascher
    R. I. McLachlan
    Journal of Scientific Computing, 2005, 25 : 83 - 104
  • [30] Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
    马志民
    孙峪怀
    刘福生
    CommunicationsinTheoreticalPhysics, 2013, 59 (03) : 307 - 310