Theory of the Structure of Wave Fronts in Dispersive Dissipative Media.

被引:0
|
作者
Barenblatt, G.I.
Shapiro, G.I.
机构
来源
Izvestia Akademii nauk SSSR. Fizika atmosfery i okeana | 1984年 / 20卷 / 03期
关键词
MATHEMATICAL MODELS;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Korteweg-de Vries-Burgers equation as a model the structure of wave fronts in dispersive media with weak dissipation is considered. The distribution of the motion properties across such fronts is of oscillatory nature. A nonlinear equation of Burgers type is derived for spatially smoothed quantities for the case where the number of oscillations in the front is high. It is shown that the effective viscosity figuring in this equation can be several orders higher than the actual one. Within the framework of a semiempirical approach certain formulas for the effective viscosity are proposed. A comparison is made with the results of numerical and analytical calculations of the initial (unsmoothed) equation in both the steady and unsteady stages.
引用
收藏
页码:277 / 284
相关论文
共 50 条
  • [21] NONLINEAR DISPERSIVE OR DISSIPATIVE WAVES IN INHOMOGENEOUS MEDIA
    ASANO, N
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1971, 31 (06) : 1830 - &
  • [22] Electromagnetic energy density in dispersive and dissipative media
    Nunes, Frederico Dias
    Vasconcelos, Thiago Campos
    Bezerra, Marcel
    Weiner, John
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (06) : 1544 - 1552
  • [23] Electromagnetic pulse propagation through stratified dissipative media.
    Dvoretzki, PI
    Iarmakhov, IG
    Popov, SB
    RADAR 97, 1997, (449): : 756 - 759
  • [24] FREQUENCY DEPENDENCE OF PULSED LASER SIGNALS IN DISSIPATIVE MEDIA.
    Wagh, M.D.
    Rao, B.V.
    Indian Journal of Pure and Applied Physics, 1975, 13 (04): : 269 - 270
  • [25] PHASE STOCHASTIZATION MECHANISM AND STRUCTURE OF WAVE TURBULENCE IN DISSIPATIVE MEDIA
    VISHKIND, SY
    RABINOVICH, MI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1976, 71 (08): : 557 - 571
  • [26] PARTIAL POWER LAW FOR A WAVEGUIDE CONSISTING OF DISPERSIVE MEDIA.
    Semenov, N.A.
    Radio engineering & electronic physics, 1980, 25 (01): : 42 - 45
  • [27] Antibiotic theory in otitis media.
    Gungor A.
    Bluestone C.D.
    Current Allergy and Asthma Reports, 2001, 1 (4) : 364 - 372
  • [28] PHASE-SPACE ASYMPTOTIC ANALYSIS OF WAVE-PROPAGATION IN HOMOGENEOUS DISPERSIVE AND DISSIPATIVE MEDIA
    HOC, ND
    BESIERIS, IM
    SOCKELL, ME
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1985, 33 (11) : 1237 - 1248
  • [29] The media and modernity. A social theory of the media.
    Collins, R
    PHILOSOPHY OF THE SOCIAL SCIENCES, 1998, 28 (01) : 152 - 155
  • [30] Spectral theory of time dispersive and dissipative systems
    Figotin, A
    Schenker, JH
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 199 - 263