Joint state and parameter estimation for multisensor nonlinear dynamic systems on the basis of strong tracking filter

被引:0
|
作者
Wen, Cheng-Lin [1 ,2 ]
Chen, Zhi-Guo [1 ]
Zhou, Dong-Hua [2 ]
机构
[1] Sch. of Comp. and Info. Eng., Henan Univ., Kaifeng 475001, China
[2] Lab. of Intelligent Technol., Tsinghua Univ., Beijing 100084, China
来源
关键词
Adaptive filtering - Algorithms - Computer simulation - Kalman filtering - Mathematical models - Nonlinear systems - Parameter estimation - State estimation;
D O I
暂无
中图分类号
学科分类号
摘要
By combining the strong tracking filtering theory with data fusionn estimation technology, a new joint state and parameter estimation algorithm of multisensor based on strong tracking filter is proposed. For the multisensor and single model nonlinear dynamic systems having the same sample rates for every sensor, the fusion estimate on the basis of global information by use of strong tracking filter is established, and the effectiveness of the new algorithm is also illustrated by use of an example. These give a primary solution to the fusion estimation problem having bigger errors produced by Kalman filler because of uncertainties of modeling system. This work enriches and develops the information fusion theory.
引用
收藏
页码:1715 / 1717
相关论文
共 50 条
  • [41] Joint state and parameter estimation of quadrotor based on extended Kalman filter and complementary filter
    Janusz, Wojciech
    Niezabitowski, Michal
    PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 274 - 279
  • [42] Joint Unscented Kalman Filter for State and Parameter Estimation in Vehicle Dynamics
    Wielitzka, Mark
    Dagen, Matthias
    Ortmaier, Tobias
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1945 - 1950
  • [43] Mean-Square Joint State and Parameter Estimation for Uncertain Nonlinear Polynomial Stochastic Systems
    Basin, Michael
    Loukianov, Alexander
    Hernandez-Gonzalez, Miguel
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 626 - 631
  • [44] Strong tracking particle filter based fault diagnosis for nonlinear systems
    Liu Shirong
    He Wenbo
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 539 - +
  • [45] State Estimation for Sampled-Data Descriptor Nonlinear System: A Strong Tracking Unscented Kalman Filter Approach
    Liang, Tiantian
    Wang, Mao
    Zhou, Zhenhua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [46] Least Squares Estimation and Kalman Filter Based Dynamic State and Parameter Estimation
    Fan, Lingling
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [47] Nonlinear State Estimation With Multisensor Stochastic Scheduling
    Zheng, Xiaoyuan
    Zhang, Hao
    Wang, Zhuping
    Zhang, Changzhu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (05): : 3349 - 3359
  • [48] H∞ State and Parameter Estimation for Lipschitz Nonlinear Systems
    Alvarado-Mendez, Pedro Eusebio
    Astorga-Zaragoza, Carlos M.
    Osorio-Gordillo, Gloria L.
    Aguilera-Gonzalez, Adriana
    Vargas-Mendez, Rodolfo
    Reyes-Reyes, Juan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (04)
  • [49] A Parameter Estimation Approach to State Observation of Nonlinear Systems
    Ortega, R.
    Bobtsov, A.
    Pyrkin, A.
    Aranovskiy, S.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6336 - 6341
  • [50] A method for simultaneous state and parameter estimation in nonlinear systems
    Haessig, D
    Friedland, B
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 947 - 951