Joint state and parameter estimation for multisensor nonlinear dynamic systems on the basis of strong tracking filter

被引:0
|
作者
Wen, Cheng-Lin [1 ,2 ]
Chen, Zhi-Guo [1 ]
Zhou, Dong-Hua [2 ]
机构
[1] Sch. of Comp. and Info. Eng., Henan Univ., Kaifeng 475001, China
[2] Lab. of Intelligent Technol., Tsinghua Univ., Beijing 100084, China
来源
关键词
Adaptive filtering - Algorithms - Computer simulation - Kalman filtering - Mathematical models - Nonlinear systems - Parameter estimation - State estimation;
D O I
暂无
中图分类号
学科分类号
摘要
By combining the strong tracking filtering theory with data fusionn estimation technology, a new joint state and parameter estimation algorithm of multisensor based on strong tracking filter is proposed. For the multisensor and single model nonlinear dynamic systems having the same sample rates for every sensor, the fusion estimate on the basis of global information by use of strong tracking filter is established, and the effectiveness of the new algorithm is also illustrated by use of an example. These give a primary solution to the fusion estimation problem having bigger errors produced by Kalman filler because of uncertainties of modeling system. This work enriches and develops the information fusion theory.
引用
收藏
页码:1715 / 1717
相关论文
共 50 条
  • [31] A Particle Filter Approach to Robust State Estimation for a Class of Nonlinear Systems with Stochastic Parameter Uncertainty
    Kim, Sehoon
    Won, Sangchul
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (05) : 1194 - 1200
  • [32] Vehicle handling dynamics state estimation based on strong tracking filter
    College of Mechantronics and Automobile Engineering, Chongqing JiaoTong University, Chongqing, China
    Int. J. Control Autom., 9 (21-32):
  • [33] Sequential Fusion and State Estimation for Asynchronous Multirate Multisensor Dynamic Systems
    Jiang, Lu
    Yan, Liping
    Xiao, Bo
    Xia, Yuanqing
    Fu, Mengyin
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 291 - 296
  • [34] Multi-state dependent parameter model identification and estimation for nonlinear dynamic systems
    Sadeghi, J.
    Tych, W.
    Chotai, A.
    Young, P. C.
    ELECTRONICS LETTERS, 2010, 46 (18) : 1265 - U43
  • [35] Dynamic State Estimation of Power Systems by p-Norm Nonlinear Kalman Filter
    Wang, Wanli
    Tse, Chi K.
    Wang, Shiyuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (05) : 1715 - 1728
  • [36] Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search
    Liao, Qixiang
    Zhou, Shudao
    Shi, Hanqing
    Shi, Weilai
    NEURAL COMPUTATION, 2017, 29 (04) : 1103 - 1123
  • [37] Parameter set selection for estimation of nonlinear dynamic systems
    Chu, Yunfei
    Hahn, Juergen
    AICHE JOURNAL, 2007, 53 (11) : 2858 - 2870
  • [38] Genetic algorithm in parameter estimation of nonlinear dynamic systems
    Paterakis, E
    Petridis, V
    Kehagias, A
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN V, 1998, 1498 : 1008 - 1017
  • [39] State estimation of a robot joint by a novel nonlinear tracking differentiator
    Tu, Xiao
    Zhou, Yunfei
    Zhao, Pu
    Cheng, Xin
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2018, 45 (01) : 11 - 22
  • [40] A HIGH ORDER FILTER FOR ESTIMATION OF NONLINEAR DYNAMIC SYSTEMS
    Lee, Taewook
    Singla, Puneet
    Majji, Manoranjan
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 543 - 563