Joint state and parameter estimation for multisensor nonlinear dynamic systems on the basis of strong tracking filter

被引:0
|
作者
Wen, Cheng-Lin [1 ,2 ]
Chen, Zhi-Guo [1 ]
Zhou, Dong-Hua [2 ]
机构
[1] Sch. of Comp. and Info. Eng., Henan Univ., Kaifeng 475001, China
[2] Lab. of Intelligent Technol., Tsinghua Univ., Beijing 100084, China
来源
关键词
Adaptive filtering - Algorithms - Computer simulation - Kalman filtering - Mathematical models - Nonlinear systems - Parameter estimation - State estimation;
D O I
暂无
中图分类号
学科分类号
摘要
By combining the strong tracking filtering theory with data fusionn estimation technology, a new joint state and parameter estimation algorithm of multisensor based on strong tracking filter is proposed. For the multisensor and single model nonlinear dynamic systems having the same sample rates for every sensor, the fusion estimate on the basis of global information by use of strong tracking filter is established, and the effectiveness of the new algorithm is also illustrated by use of an example. These give a primary solution to the fusion estimation problem having bigger errors produced by Kalman filler because of uncertainties of modeling system. This work enriches and develops the information fusion theory.
引用
收藏
页码:1715 / 1717
相关论文
共 50 条
  • [1] Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Uzunoglu, Bahri
    Akifulker, Muhammed
    Bayazit, Dervis
    2016 57TH INTERNATIONAL SCIENTIFIC CONFERENCE ON POWER AND ELECTRICAL ENGINEERING OF RIGA TECHNICAL UNIVERSITY (RTUCON), 2016,
  • [2] Simplex Optimization for Particle Filter Joint State and Parameter Estimation of Dynamic Power Systems
    Ulker, Muhammed Akif
    Uzunoglu, Bahri
    17TH IEEE INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES - IEEE EUROCON 2017 CONFERENCE PROCEEDINGS, 2017, : 399 - 404
  • [3] State and parameter estimation in nonlinear systems as an optimal tracking problem
    Creveling, Daniel R.
    Gill, Philip E.
    Abarbanel, Henry D. I.
    PHYSICS LETTERS A, 2008, 372 (15) : 2640 - 2644
  • [4] Joint state and parameter robust estimation of stochastic nonlinear systems
    Stojanovic, Vladimir
    Nedic, Novak
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (14) : 3058 - 3074
  • [5] State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements
    Yan, Liping
    Xiao, Bo
    Xia, Yuanqing
    Fu, Mengyin
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (06) : 516 - 529
  • [6] A strong tracking proportional integral Kalman filter for nonlinear system state estimation
    Lan, JA
    Mu, CD
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 532 - 537
  • [7] PARAMETER AND STATE ESTIMATION OF KINETIC AND NONLINEAR DYNAMIC-SYSTEMS
    OKADA, T
    COMPUTERS & CHEMISTRY, 1984, 8 (01): : 29 - 37
  • [8] Online Noise Identification for Joint State and Parameter Estimation of Nonlinear Systems
    Kontoroupi, Thaleia
    Smyth, Andrew W.
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2016, 2 (03):
  • [9] Joint state and parameter estimation for uncertain stochastic nonlinear polynomial systems
    Basin, Michael V.
    Loukianov, Alexander G.
    Hernandez-Gonzalez, Miguel
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2013, 44 (07) : 1200 - 1208
  • [10] Joint estimation of state, parameter, and unknown input for nonlinear systems: A composite estimation scheme
    Wang, Licheng
    Luo, Qi
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 9519 - 9537