Error estimation for adaptive computations of shell structures

被引:0
作者
Díez, Pedro [1 ]
Huerta, Antonio [1 ]
机构
[1] Universität Politécnica de Catalunya E.T.S., Ingenieros de Caminos Barcelona, Campus Nord, E-08034, Barcelona
来源
Revue Europeenne des Elements | 2000年 / 9卷 / 1-3期
关键词
Adaptivity; Error estimation; Locking free formulation; Thin shell elements;
D O I
10.1080/12506559.2000.10511429
中图分类号
学科分类号
摘要
The finite element discretization of a shell structure introduces two kinds of errors: the error in the functional approximation and the error in the geometry approximation. The first is associated with the finite dimensional interpolation space and is present in any finite element computation. The latter is associated with the piecewise polynomial approximation of a curved surface and is much more relevant in shell problems than in any other standard 2D or 3D computation. In this work, a residual type error estimator introduced for standard finite element analysis is generalized to shell problems. This allows easily to account for the real original geometry of the problem in the error estimation procedure and precludes the necessity of comparing generalized stress components between non coplanar elements. That is, the main drawbacks of flux projection error estimators are avoided.
引用
收藏
页码:49 / 66
页数:17
相关论文
共 15 条
  • [1] Ayad R., Dhatt G., Batoz J.L., A new hybrid-mixed variational approach for Reissner-Midlin plates. The MiSP model, International Journal for Numerical Methods in Engineering, 42, pp. 1149-1179, (1999)
  • [2] Baumann M., Schweizerhof K., Adaptive mesh generation of arbitrarily curved shell structures, Computers & Structures, 64, pp. 209-220, (1997)
  • [3] Clrak F., Ramm E., A-posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Computer Methods in Applied Mechanics and Engineering, 156, pp. 351-362, (1998)
  • [4] Di'Ez P., Egozcue J.J., Huerta A., Analysis of the average efficiency of an error estimator, Element Methods: Superconvergence, Post-processing and A Posteriori Error Estimates, pp. 113-126, (1997)
  • [5] Di'Ez P., Egozcue J.J., Huerta A., A posteriori error estimation for standard finite element analysis, Computer Methods in Applied Mechanics and Engineering, 163, pp. 141-157, (1998)
  • [6] Di'Ez P., Arroyo M., Huerta A., Adaptivity based on error estimation for vis-coplastic softening materials, Mechanics of Cohesive-Frictional Materials, 5, pp. 87-112, (2000)
  • [7] Donea J., Lamain L.G., A modified representation of transverse shear in C° quadrilateral plate elements, Computer Methods in Applied Mechanics and Engineering, 63, pp. 183-207, (1987)
  • [8] Huerta A., Dfez P., Egozcue J.J., Error estimation for linear and nonlinear problems, Finite Element Methods: Superconvergence, Post-processing and A Posteriori Error Estimates, pp. 183-194, (1997)
  • [9] Huerta A., Di'Ez P., Error estimation including pollution assessment for nonlinear finite element analysis, Computer Methods in Applied Mechanics and Engineering, 181, pp. 21-41, (2000)
  • [10] Hughes T.J.R., Feijo'O G.R., Mazzei L., Quincy J.B., The variational mul-tiscale method - A paradigm for computational mechanics, Computer Methods in Applied Mechanics and Engineering, 166, pp. 3-24, (1998)