Stationary and non-stationary random vibration of oscillators with bilinear hysteresis

被引:0
|
作者
Faculty of Civil Engineering, Norwegian Univ. of Sci. and Technol., Rich. Birkelands vei 1a, N-7034 Trondheim, Norway [1 ]
机构
来源
International Journal of Non-Linear Mechanics | 1996年 / 31卷 / 5 SPEC. ISS.期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:553 / 562
相关论文
共 50 条
  • [41] The problem of the stationary and non-stationary tail
    Volberg, O
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1939, 24 : 657 - 661
  • [42] Non-stationary random vibration analysis for train bridge systems subjected to horizontal earthquakes
    Zhang, Z. C.
    Lin, J. H.
    Zhang, Y. H.
    Zhao, Y.
    Howson, W. P.
    Williams, F. W.
    ENGINEERING STRUCTURES, 2010, 32 (11) : 3571 - 3582
  • [43] Non-stationary random ground vibration due to loads moving along a railway track
    Lu, Feng
    Gao, Qiang
    Lin, J. H.
    Williams, F. W.
    JOURNAL OF SOUND AND VIBRATION, 2006, 298 (1-2) : 30 - 42
  • [44] Procedure for non-stationary PDF solution of nonlinear stochastic oscillators
    Er, GK
    Frimpong, S
    Iu, V
    COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE, PROCEEDINGS, 2003, : 181 - 186
  • [45] Non-stationary random vibration modelling and analysis via Functional Series TARMAX models
    Poulimenos, A. G.
    Fassois, S. D.
    PROCEEDINGS OF ISMA 2004: INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING, VOLS 1-8, 2005, : 2475 - 2489
  • [46] Non-stationary random vibration analysis for a mobile manipulator based on PEM-PIM
    Wang, W.-D., 1600, Chinese Vibration Engineering Society (32):
  • [47] Method of non-stationary random vibration reliability of hydro-turbine generator unit
    Li, Zhaojun
    Liu, Fuxiu
    Cai, Ganwei
    Ding, Jiang
    Chen, Jiaquan
    ACTA MECHANICA SINICA, 2024, 40 (09)
  • [48] ANALYSIS OF THE NON-STATIONARY MODEL OF COUPLED OSCILLATORS WITH INDUCTIVE COUPLING
    Ayzatsky, M., I
    Kramarenko, K. Yu
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2018, (03): : 86 - 90
  • [49] Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity
    Slepnev, Andrei V.
    Bukh, Andrei V.
    Vadivasova, Tatiana E.
    NONLINEAR DYNAMICS, 2017, 88 (04) : 2983 - 2992
  • [50] Stationary and non-stationary chimeras in an ensemble of chaotic self-sustained oscillators with inertial nonlinearity
    Andrei V. Slepnev
    Andrei V. Bukh
    Tatiana E. Vadivasova
    Nonlinear Dynamics, 2017, 88 : 2983 - 2992