Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films

被引:0
|
作者
机构
[1] Ferreira, I.
[2] Fortunato, E.
[3] Martins, R.
[4] Vilarinho, P.
来源
Ferreira, I. | 1644年 / American Institute of Physics Inc.卷 / 91期
关键词
Amorphous films - Chemical vapor deposition - Wire - Optical properties - Thin films - Amorphous silicon;
D O I
暂无
中图分类号
学科分类号
摘要
We have produced amorphous intrinsic silicon thin films by hot-wire plasma assisted chemical vapor deposition, a process that combines the traditional rf plasma and the recent hot-wire techniques. In this work we have studied the influence of hydrogen gas dilution and rf power on the surface morphology, composition, structure and electro-optical properties of these films. The results show that by using this deposition technique it is possible to obtain at moderate rf power and filament temperature, compact i-type silicon films with ημτ of the order of 10-5cm2V-1, without hydrogen dilution. © 2002 American Institute of Physics.
引用
收藏
相关论文
共 50 条
  • [41] Selective deposition of polycrystalline silicon thin films by hot-wire CVD
    Yu, SY
    Gulari, E
    Kanicki, J
    POLYCRYSTALLINE THIN FILMS: STRUCTURE, TEXTURE, PROPERTIES, AND APPLICATIONS II, 1996, 403 : 411 - 416
  • [42] Structual and optoelectronic properties of polycrystalline silicon thin films prepared by hot-wire chemical vapor deposition at low temperatures
    Wang, LJ
    Zhu, MF
    Liu, FZ
    Liu, JL
    Han, YQ
    ACTA PHYSICA SINICA, 2003, 52 (11) : 2934 - 2938
  • [43] Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire silicon chemical vapor deposition
    Kim, Jin-Yong
    Kim, Doh-Yeon
    Hwang, Nong-Moon
    PURE AND APPLIED CHEMISTRY, 2006, 78 (09) : 1715 - 1722
  • [44] Low substrate temperature deposition of amorphous and microcrystalline silicon films on plastic substrates by hot-wire chemical vapor deposition
    Alpuim, P
    Chu, V
    Conde, JP
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 : 110 - 114
  • [45] Microstructures of microcrystalline silicon thin films prepared by hot wire chemical vapor deposition
    Zhu, M
    Guo, X
    Chen, G
    Han, H
    He, M
    Sun, K
    THIN SOLID FILMS, 2000, 360 (1-2) : 205 - 212
  • [46] A comparison of microcrystalline silicon prepared by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition: electronic and device properties
    R. Carius
    T. Merdzhanova
    S. Finger
    O. Klein
    Journal of Materials Science: Materials in Electronics, 2003, 14 : 625 - 628
  • [47] A comparison of microcrystalline silicon prepared by plasma-enhanced chemical vapor deposition and hot-wire chemical vapor deposition: electronic and device properties
    Carius, R
    Merdzhanova, T
    Finger, F
    Klein, S
    Vetterl, O
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2003, 14 (10-12) : 625 - 628
  • [48] Hot-wire chemical vapor deposition of carbon nanotubes
    Dillon, AC
    Mahan, AH
    Alleman, JL
    Heben, MJ
    Parilla, PA
    Jones, KM
    THIN SOLID FILMS, 2003, 430 (1-2) : 292 - 295
  • [49] Hot-wire chemical vapor deposition of silicon nitride for multicrystalline silicon solar cells
    Goldbach, HD
    van der Werf, CHM
    Löffler, J
    Scarfó, A
    Kylnerl, AMC
    Stannowski, B
    ArnoldBik, WM
    Weeber, A
    Rieffe, H
    Soppe, WJ
    Rath, JK
    Schropp, REI
    Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference - 2005, 2005, : 1249 - 1252
  • [50] Effect of rf power on the growth of silicon nanowires by hot-wire assisted plasma enhanced chemical vapor deposition (HW-PECVD) technique
    Chong, Su Kong
    Goh, Boon Tong
    Aspanut, Zarina
    Muhamad, Muhamad Rasat
    Dee, Chang Fu
    Rahman, Saadah Abdul
    THIN SOLID FILMS, 2011, 519 (15) : 4933 - 4939