Least-squares finite element method for incompressible flow in stress-velocity-pressure version

被引:0
|
作者
机构
[1] Chang, C.L.
[2] Yang, S.Y.
[3] Hsu, C.H.
来源
Chang, C.L. | 1600年 / Elsevier Science S.A., Lausanne, Switzerland卷 / 128期
关键词
Compatibility condition - Divergence free condition - First order system - Incompressible flow - Least-squares finite element method - Second-order dynamic equation - Six first-order equations;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1 / 2
相关论文
共 50 条
  • [31] A LEAST-SQUARES FINITE-ELEMENT METHOD FOR VISCOELASTIC FLUID-FLOW PROBLEMS
    WANG, KC
    CAREY, GF
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1993, 17 (11) : 943 - 953
  • [32] Parallel implementation of a least-squares spectral element solver for incompressible flow problems
    Nool, M
    Proot, MAJ
    COMPUTATIONAL SCIENCE-ICCS 2002, PT I, PROCEEDINGS, 2002, 2329 : 900 - 909
  • [33] Least-squares finite-element lattice Boltzmann method
    Li, YS
    LeBoeuf, EJ
    Basu, PK
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [34] Least-squares mixed generalized multiscale finite element method
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 764 - 787
  • [35] Least-squares finite element method for ordinary differential equations
    Chung, Matthias
    Krueger, Justin
    Liu, Honghu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 418
  • [36] Least-squares mixed finite element method for Sobolev equations
    Gu, HM
    Yang, DP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (05): : 505 - 517
  • [37] Parallel implementation of a least-squares spectral element solver for incompressible flow problems
    Nool, M
    Proot, MMJ
    JOURNAL OF SUPERCOMPUTING, 2004, 28 (02): : 135 - 148
  • [38] The least-squares meshfree method for the steady-incompressible viscous flow
    Zhang, XK
    Kwon, KC
    Youn, SK
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) : 182 - 207
  • [39] Parallel Implementation of a Least-Squares Spectral Element Solver for Incompressible Flow Problems
    Margreet Nool
    Michael M. J. Proot
    The Journal of Supercomputing, 2004, 28 : 135 - 148
  • [40] Simulations of incompressible fluid flows by a least squares finite element method
    Pereira, V.D.
    Campos Silva, J.B.
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2005, 27 (03) : 274 - 282