Mathematical models for VLSI array processors for two-dimensional discrete transforms

被引:0
|
作者
Ryzhevich, O.V. [1 ]
Sobolevsky, P.I. [1 ]
机构
[1] Natl Acad of Sciences of Belarus, Minsk, Russia
来源
Engineering Simulation | 2000年 / 17卷 / 03期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
9
引用
收藏
页码:315 / 324
相关论文
共 50 条
  • [41] Localization Operators for Two-Dimensional Stockwell Transforms
    Liu, Yu
    NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 : 287 - 296
  • [42] Discrete focusing in an optical fiber with a two-dimensional square array of coupled waveguides
    Suran, Eric
    Louradour, Frederic
    Barthelemy, Alain
    Kudlinski, Alexandre
    Martinelli, Gilbert
    Quiquempois, Yves
    Douay, Marc
    OPTICS LETTERS, 2009, 34 (16) : 2536 - 2538
  • [43] Pipelined Lifting-based VLSI Architecture for Two-dimensional Inverse Discrete Wavelet Transform
    Koko, Ibrahim Saeed
    Agustiawan, Herman
    ICCEE 2008: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON COMPUTER AND ELECTRICAL ENGINEERING, 2008, : 692 - 700
  • [44] Two-dimensional transforms for device color calibration
    Bala, R
    Monga, V
    Sharma, G
    Van de Capelle, JP
    COLOR IMAGING IX: PROCESSING, HARDCOPY, AND APPLICATIONS, 2004, 5293 : 250 - 261
  • [45] Two-Dimensional Fourier Transforms in Polar Coordinates
    Baddour, Natalie
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 165, 2011, 165 : 1 - 45
  • [46] Inversion formulas for two-dimensional Stockwell transforms
    Liu, Yu
    Wong, M. W.
    PSEUDO-DIFFERENTIAL OPERATORS: PARTIAL DIFFERENTIAL EQUATIONS AND TIME-FREQUENCY ANALYSIS, 2007, 52 : 323 - 330
  • [47] Triangular summability of two-dimensional Fourier transformsСуммирование по треугольникам двумерных преобразований Фурье
    Ferenc Weisz
    Analysis Mathematica, 2012, 38 (1) : 65 - 81
  • [48] Two-dimensional subband transforms: theory and applications
    Hossen, A
    Heute, U
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2004, 151 (05): : 389 - 399
  • [49] A VLSI systolic array architecture for computation of third-order cumulants for two-dimensional signals
    Musallam, ZH
    Ahmed, RE
    Alshebeili, SA
    INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING - PARELEC 2000, PROCEEDINGS, 2000, : 134 - 138
  • [50] Mathematical models of two-dimensional diffraction problems on periodic structures.
    Dushkin, VD
    MMET'96 - VITH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, PROCEEDINGS, 1996, : 483 - 486