The National Ignition Facility (NIF), which is expected to resolve important Defense Program and inertial fusion energy issues for energy production in the future, will consist of a laser system with 192 independent beamlets transported to a target chamber. The target chamber is a multi-purpose structure that provides the interface between the target and the laser optics. The chamber must be capable of achieving moderate vacuum levels in reasonable times; it must remain dimensionally stable within micron tolerances, provide support for the optics, diagnostics, and target positioner; it must minimize the debris from the x-ray and laser light environments; and it must be capable of supporting external neutron shielding. The chamber must also be fabricated from a low neutron activation material. This paper describes the conceptual design of the target chamber, target positioner, and shielding for the NIF.