As a continuation of our earlier work, we have analyzed the higher-order perturbative corrections to the formation of (ion-acoustic) solitary waves in a relativistic plasma. It is found that the relativistic considerations affect the amplitude and width variation - as conjectured in our previous paper. Our analysis employs a higher-order singular perturbation technique, with the elimination of secular terms in stages. In this way we arrive at an inhomogeneous KdV-type equation, which is then solved exactly. At this point a new phenomenon arises at a critical value of the phase velocity at which the coefficient of the nonlinear term in the KdV equation vanishes. A new set of stretched co-ordinate is then used to derive a modified KdV equation. In both cases we have numerically computed the specific physical profile of the new solitary wave and its width.