Superlinear convergence of the affine scaling algorithm

被引:0
作者
Tsuchiya, T.
Monteiro, R.D.C.
机构
来源
Mathematical Programming, Series A | 1996年 / 75卷 / 01期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[21]   On the Superlinear Convergence Order of the Logarithmic Barrier Algorithm [J].
Jean-Pierre Dussault ;
Abdellatif Elafia .
Computational Optimization and Applications, 2001, 19 :31-53
[22]   Superlinear Convergence of Randomized Block Lanczos Algorithm [J].
Yuan, Qiaochu ;
Gu, Ming ;
Li, Bo .
2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, :1404-1409
[23]   A Strong Subfeasible Directions Algorithm with Superlinear Convergence [J].
JIAN JinbaoDept of Math and Information Science Guangxi University Nanning China .
Journal of Systems Science and Systems Engineering, 1996, (03) :287-296
[24]   Local Convergence of the Affine-Scaling Interior-Point Algorithm for Nonlinear Programming [J].
L.N. Vicente .
Computational Optimization and Applications, 2000, 17 :23-35
[25]   Local convergence of the affine-scaling interior-point algorithm for nonlinear programming [J].
Vicente, LN .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (01) :23-35
[26]   EXAMPLES IN THE THEORY OF CONVERGENCE OF THE AFFINE SCALING METHOD [J].
Dikin, I. I. .
CYBERNETICS AND SYSTEMS ANALYSIS, 2006, 42 (01) :157-158
[27]   Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds [J].
Ulbrich, M ;
Ulbrich, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (06) :1938-1984
[28]   Global and local convergence of a new affine scaling trust region algorithm for linearly constrained optimization [J].
Gu, Chao ;
Zhu, De Tong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (10) :1203-1213
[29]   Global and local convergence of a new affine scaling trust region algorithm for linearly constrained optimization [J].
Chao Gu ;
De Tong Zhu .
Acta Mathematica Sinica, English Series, 2016, 32 :1203-1213
[30]   Global and Local Convergence of a New Affine Scaling Trust Region Algorithm for Linearly Constrained Optimization [J].
Chao GU ;
De Tong ZHU .
Acta Mathematica Sinica, 2016, 32 (10) :1203-1213