Pseudo relevance feedback based on iterative probabilistic one-class SVMs in web image retrieval

被引:0
|
作者
He, Jingrui [1 ]
Li, Mingjing [2 ]
Li, Zhiwei [2 ]
Zhang, Hong-Jiang [2 ]
Tong, Hanghang [1 ]
Zhang, Changshui [1 ]
机构
[1] Automation Department, Tsinghua University, Beijing 100084, China
[2] Microsoft Research Asia, 49 Zhichun Road, Beijing 100080, China
关键词
Image enhancement - Image retrieval - Iterative methods - Search engines - Support vector machines;
D O I
10.1007/978-3-540-30542-2_27
中图分类号
学科分类号
摘要
To improve the precision of top-ranked images returned by a web image search engine, we propose in this paper a novel pseudo relevance feedback method named iterative probabilistic one-class SVMs to re-rank the retrieved images. By assuming that most top-ranked images are relevant to the query, we iteratively train one-class SVMs, and convert the outputs to probabilities so as to combine the decision from different image representation. The effectiveness of our method is validated by systematic experiments even if the assumption is not well satisfied. © Springer-Verlag Berlin Heidelberg 2004.
引用
收藏
页码:213 / 220
相关论文
共 50 条
  • [31] Image retrieval based on indexing and relevance feedback
    Saha, Sanjoy K.
    Das, Amit K.
    Chanda, Bhabatosh
    PATTERN RECOGNITION LETTERS, 2007, 28 (03) : 357 - 366
  • [32] Using Pseudo-Relevance Feedback to Improve Image Retrieval Results
    Torjmen, Mouna
    Pinel-Sauvagnat, Karen
    Boughanem, Mohand
    ADVANCES IN MULTILINGUAL AND MULTIMODAL INFORMATION RETRIEVAL, 2008, 5152 : 665 - 673
  • [33] Pseudo-relevance feedback diversification of social image retrieval results
    Boteanu, Bogdan
    Mironica, Ionut
    Ionescu, Bogdan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (09) : 11889 - 11916
  • [34] Pseudo-relevance feedback diversification of social image retrieval results
    Bogdan Boteanu
    Ionuţ Mironică
    Bogdan Ionescu
    Multimedia Tools and Applications, 2017, 76 : 11889 - 11916
  • [35] A multi-class relevance feedback approach to image retrieval
    Jing, P
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 46 - 49
  • [36] MULTI-CLASS RELEVANCE FEEDBACK FOR COLLABORATIVE IMAGE RETRIEVAL
    Chandramouli, K.
    Izquierdo, E.
    2009 10TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES, 2009, : 214 - 217
  • [37] Semantic class discriminant projection for image retrieval with relevance feedback
    Huu, Quynh Nguyen
    Viet, Dung Cu
    Thuy, Quynh Dao Thi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15351 - 15376
  • [38] Semantic class discriminant projection for image retrieval with relevance feedback
    Quynh Nguyen Huu
    Dung Cu Viet
    Quynh Dao Thi Thuy
    Multimedia Tools and Applications, 2021, 80 : 15351 - 15376
  • [39] Query by sketch and relevance feedback for content-based image retrieval over the web
    Di Sciascio, E
    Mongiello, M
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 1999, 10 (06): : 565 - 584
  • [40] Vector space model adaptation and pseudo relevance feedback for content-based image retrieval
    H. Karamti
    M. Tmar
    M. Visani
    T. Urruty
    F. Gargouri
    Multimedia Tools and Applications, 2018, 77 : 5475 - 5501