Comparison of the cross Wigner distribution and the Gabor transform

被引:0
|
作者
Fowler, M.L.
Sibul, L.H.
机构
来源
Proceedings of the Annual Conference on Information Sciences and Systems | 1991年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Scaling Wigner Distribution in the Framework of Linear Canonical Transform
    Firdous A. Shah
    Aajaz A. Teali
    Circuits, Systems, and Signal Processing, 2023, 42 : 1181 - 1205
  • [22] Scaling Wigner Distribution in the Framework of Linear Canonical Transform
    Shah, Firdous A.
    Teali, Aajaz A.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (02) : 1181 - 1205
  • [23] THE DEVELOPMENT OF A DISCRETE TRANSFORM FOR THE WIGNER DISTRIBUTION AND AMBIGUITY FUNCTION
    POLETTI, MA
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1988, 84 (01): : 238 - 252
  • [24] Wigner distribution moments associated with the linear canonical transform
    Yan, Jun-Ping
    Li, Bing-Zhao
    Chen, Yi-Hong
    Cheng, Qi-Yuan
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2013, 100 (04) : 473 - 481
  • [25] Comparison of wavelet, Gabor and curvelet transform for face recognition
    Zhang, Jiulong
    Wang, Yinghui
    Zhang, Zhiyu
    Xia, Chunli
    OPTICA APPLICATA, 2011, 41 (01) : 183 - 193
  • [26] An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution
    Rishi Raj Sharma
    Avinash Kalyani
    Ram Bilas Pachori
    Signal, Image and Video Processing, 2020, 14 : 249 - 256
  • [27] Face and palmprint multimodal biometric systems using Gabor-Wigner transform as feature extraction
    Saini, Nirmala
    Sinha, Aloka
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 921 - 932
  • [28] On the Bargmann transform and the Wigner transform
    Luo, SL
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 413 - 418
  • [29] Wigner-Ville Distribution Associated with the Linear Canonical Transform
    Bai, Rui-Feng
    Li, Bing-Zhao
    Cheng, Qi-Yuan
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [30] Reconstruction of non stationary signals by inverse transform of Wigner distribution
    Nippon Kikai Gakkai Ronbunshu C Hen, 607 (975-981):