An iterative method for solving the spectral problem of complex symmetric matrices

被引:0
|
作者
Hasanov, V.I. [1 ]
机构
[1] Laboratory of Mathematical Modelling, Faculty of Math. and Informatics, Shumen University, Shumen 9712, Bulgaria
来源
Computers and Mathematics with Applications | 2004年 / 47卷 / 4-5期
关键词
Convergence of numerical methods - Digital arithmetic - Eigenvalues and eigenfunctions - Mathematical transformations - Matrix algebra - Problem solving - Spectrum analysis;
D O I
10.1016/s0898-1221(04)90043-0
中图分类号
学科分类号
摘要
An effective method for computing eigenvalues and eigenvectors of complex symmetric matrices in real arithmetic is proposed. The problem for computing eigenvalues and eigenvectors of complex symmetric matrices arises in chemical reactive problems. The problem of a complex matrix is equivalent to the spectral problem of a special 2 × 2 block real matrix. Our method uses similarity transformations and preserves the special block structure. The convergence theorem is proved. Numerical experiments are given. © 2004 Elsevier Ltd.
引用
收藏
页码:529 / 540
相关论文
empty
未找到相关数据