Different derivations of telegrapher's type kinetic equations

被引:0
|
作者
Universidad Autonoma, Metropolitana-Iztapalapa Iztapalapa, Mexico [1 ]
机构
来源
J Non Equilib Thermodyn | / 4卷 / 361-379期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
44
引用
收藏
相关论文
共 50 条
  • [1] On different derivations of telegrapher's type kinetic equations
    OlivaresRobles, MA
    GarciaColin, LS
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1996, 21 (04) : 361 - 379
  • [2] H-THEOREM FOR TELEGRAPHER TYPE KINETIC-EQUATIONS
    CAMACHO, J
    JOU, D
    PHYSICS LETTERS A, 1992, 171 (1-2) : 26 - 30
  • [5] Approximation of the Telegrapher's equations
    Golo, G
    Talasila, V
    van der Schaft, AJ
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 4587 - 4592
  • [6] Generalized Telegrapher's Equations for Buried Curved Wires
    Poljak, D.
    Cavka, D.
    Rachidi, F.
    2018 2ND URSI ATLANTIC RADIO SCIENCE MEETING (AT-RASC), 2018,
  • [7] Stability analysis of the telegrapher's equations with dynamic boundary condition
    Sano, Hideki
    SYSTEMS & CONTROL LETTERS, 2018, 111 : 34 - 39
  • [8] H-THEOREM FOR TELEGRAPHER-TYPE MASTER-EQUATIONS
    VLAD, MO
    ROSS, J
    PHYSICS LETTERS A, 1994, 184 (06) : 403 - 408
  • [9] Canonical quantisation of telegrapher's equations coupled by ideal nonreciprocal elements
    Parra-Rodriguez, A.
    Egusquiza, I. L.
    QUANTUM, 2022, 6
  • [10] Generalized Cattaneo (telegrapher's) equations in modeling anomalous diffusion phenomena
    Gorska, K.
    Horzela, A.
    Lenzi, E. K.
    Pagnini, G.
    Sandev, T.
    PHYSICAL REVIEW E, 2020, 102 (02)