Schwarz splitting variant of cubic spline collocation methods for elliptic PDEs

被引:0
|
作者
Houstis, E.N.
Rice, J.R.
Vavalis, E.A.
机构
来源
Conference on Hypercube Concurrent Computers and Applications | 1988年
关键词
D O I
10.1145/63047.63133
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions
    Li, Siqing
    Ling, Leevan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 105 : 146 - 154
  • [32] FOURIER-ANALYSIS OF SCHWARZ ALTERNATING METHODS FOR PIECEWISE HERMITE BICUBIC ORTHOGONAL SPLINE COLLOCATION
    BIALECKI, B
    DILLERY, DS
    BIT, 1993, 33 (04): : 634 - 646
  • [33] Cubic spline collocation for Volterra integral equations
    Oja, P
    Saveljeva, D
    COMPUTING, 2002, 69 (04) : 319 - 337
  • [34] Cubic Spline Collocation for Volterra Integral Equations
    Peeter Oja
    Darja Saveljeva
    Computing, 2002, 69 : 319 - 337
  • [35] OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONERS FOR ELLIPTIC PDES ON THE UNIT SPHERE
    Le Gia, Q. T.
    Sloan, I. H.
    Tran, T.
    MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 79 - 101
  • [36] Optimal Quadratic and Cubic Spline Collocation on Nonuniform Partitions
    C. C. Christara
    Kit Sun Ng
    Computing, 2006, 76 : 227 - 257
  • [37] Cubic Spline Collocation Method for Fractional Differential Equations
    Yang, Shui-Ping
    Xiao, Ai-Guo
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [38] Modified nodal cubic spline collocation for biharmonic equations
    Abeer Ali Abushama
    Bernard Bialecki
    Numerical Algorithms, 2006, 43 : 331 - 353
  • [39] Optimal quadratic and cubic spline collocation on nonuniform partitions
    Christara, CC
    Ng, KS
    COMPUTING, 2006, 76 (3-4) : 227 - 257
  • [40] COLLOCATION CUBIC ELEMENTS FOR ELLIPTIC-EQUATIONS
    STEPHENSON, JW
    SUN, J
    UTILITAS MATHEMATICA, 1992, 41 : 41 - 50