Convergence result for learning in recurrent neural networks

被引:0
|
作者
Kuan, Chung-Ming
Hornik, Kurt
White, Halbert
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Learning algorithms and the shape of the learning surface in recurrent neural networks
    Watanabe, Tatsumi
    Uchikawa, Yoshiki
    Gouhara, Kazutoshi
    Systems and Computers in Japan, 1992, 23 (13): : 90 - 107
  • [42] Global convergence of continuous-time recurrent neural networks with delays
    Zhao, Weirui
    Zhang, Huanshui
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 109 - 114
  • [43] Recurrent Neural Networks with Fixed Time Convergence for Linear and Quadratic Programming
    Diego Sanchez-Torres, Juan
    Sanchez, Edgar N.
    Loukianov, Alexander G.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [44] Global convergence of Lotka-Volterra recurrent neural networks with delays
    Yi, Z
    Tan, KK
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (11) : 2482 - 2489
  • [45] Exponential convergence of a gradient descent algorithm for a class of recurrent neural networks
    Bartlett, P
    Dasgupta, S
    38TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, PROCEEDINGS, VOLS 1 AND 2, 1996, : 497 - 500
  • [46] Convergence of discrete-time recurrent neural networks with variable delay
    Liang, JL
    Cao, J
    Lam, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (02): : 581 - 595
  • [47] Convergence of gradient descent algorithm with penalty term for recurrent neural networks
    Ding, Xiaoshuai
    Wang, Kuaini
    International Journal of Multimedia and Ubiquitous Engineering, 2014, 9 (09): : 151 - 158
  • [48] Output convergence analysis of continuous-time recurrent neural networks
    Liu, DR
    Hu, SQ
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III: GENERAL & NONLINEAR CIRCUITS AND SYSTEMS, 2003, : 466 - 469
  • [49] Sufficient conditions for error backflow convergence in dynamical recurrent neural networks
    Aussem, A
    NEURAL COMPUTATION, 2002, 14 (08) : 1907 - 1927
  • [50] On the improvement of the real time recurrent learning algorithm for recurrent neural networks
    Mak, MW
    Ku, KW
    Lu, YL
    NEUROCOMPUTING, 1999, 24 (1-3) : 13 - 36