Parameter estimation in water-distribution systems by least squares

被引:0
|
作者
Datta, R.S.N. [1 ]
Sridharan, K. [1 ]
机构
[1] Indian Inst of Science, Bangalore, India
关键词
Least squares approximations - Mathematical models - Parameter estimation - Sensitivity analysis - Valves (mechanical) - Water pipelines;
D O I
暂无
中图分类号
学科分类号
摘要
The weighted-least-squares method using sensitivity-analysis technique is proposed for the estimation of parameters in water-distribution systems. The parameters considered are the Hazen-Williams coefficients for the pipes. The objective function used is the sum of the weighted squares of the differences between the computed and the observed values of the variables. The weighted-least-squares method can elegantly handle multiple loading conditions with mixed types of measurements such as heads and consumptions, different sets and number of measurements for each loading condition, and modifications in the network configuration due to inclusion or exclusion of some pipes affected by valve operations in each loading condition. Uncertainty in parameter estimates can also be obtained. The method is applied for the estimation of parameters in a metropolitan urban water-distribution system in India.
引用
收藏
页码:405 / 422
相关论文
共 50 条
  • [1] PARAMETER-ESTIMATION IN WATER-DISTRIBUTION SYSTEMS BY LEAST-SQUARES
    DATTA, RSN
    SRIDHARAN, K
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1994, 120 (04): : 405 - 422
  • [2] Weighted least squares estimation of the shape parameter of the Weibull distribution
    Hung, WL
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2001, 17 (06) : 467 - 469
  • [3] A revisit to least-squares parameter estimation of ARMAX systems
    Zheng, WX
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 3587 - 3592
  • [4] Parameter Estimation of Least Squares Collocation
    Jin, Lihong
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MECHATRONICS, CONTROL AND AUTOMATION ENGINEERING (MCAE), 2016, 58 : 184 - 188
  • [5] Fully modified least squares cointegrating parameter estimation in multicointegrated systems
    Kheifets, Igor L.
    Phillips, Peter C. B.
    JOURNAL OF ECONOMETRICS, 2023, 22 (02) : 300 - 319
  • [6] Combined state and least squares parameter estimation algorithms for dynamic systems
    Ding, Feng
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (01) : 403 - 412
  • [7] Parameter estimation of quantized DARMA systems using weighted least squares
    Jing, Lida
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (12): : 1732 - 1738
  • [8] Least-squares parameter estimation for systems with irregularly missing data
    Ding, Feng
    Ding, Jie
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2010, 24 (07) : 540 - 553
  • [9] Dynamic least squares parameter estimation of structures
    Yap, KC
    Zimmerman, DC
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 1513 - 1519
  • [10] Parameter estimation of approximated generalized least squares estimators for the generalized pareto distribution
    Zhao, Xu
    Xue, Liu-Gen
    Li, Jing-Lan
    Cheng, Wei-Hu
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2012, 38 (05): : 789 - 792