HIGH-FREQUENCY WAVE NORMALS IN THE SOLAR WIND.

被引:0
|
作者
Herbert, Floyd [1 ]
Smith, Larry D. [1 ]
Sonett, C.P. [1 ]
机构
[1] Univ of Arizona, Lunar &, Planetary Lab, Tucson, AZ, USA, Univ of Arizona, Lunar & Planetary Lab, Tucson, AZ, USA
来源
| 1600年 / 11期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
EARTH
引用
收藏
相关论文
共 50 条
  • [1] HIGH-FREQUENCY WAVE NORMALS IN THE SOLAR-WIND
    HERBERT, F
    SMITH, LD
    SONETT, CP
    GEOPHYSICAL RESEARCH LETTERS, 1984, 11 (05) : 492 - 495
  • [2] SOLAR WIND.
    Sonett, C.P.; Coleman, P.J.Jr.; Wilcox, J.M., 1600,
  • [3] ON THE HIGH-FREQUENCY SEGMENT OF WIND WAVE SPECTRUM
    LEIKIN, IA
    ROZENBERG, AD
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 455 - 458
  • [4] DAMPING OF HIGH-FREQUENCY WAVES IN SOLAR-WIND
    GOLDSTEI.ML
    FISK, LA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1973, 54 (04): : 442 - +
  • [5] Spallogenic chromium in the solar wind.
    Nichols, RH
    Kitts, K
    Podosek, FA
    METEORITICS & PLANETARY SCIENCE, 2002, 37 (07) : A109 - A109
  • [6] MAXIMAL VELOCITY OF THE SOLAR WIND.
    Chashei, I.V.
    Soviet Physics - Lebedev Institute Reports (English Translation of Sbornik Kratkie Soobshcheniya p, 1987, (06): : 67 - 70
  • [7] High-frequency heating of the solar wind triggered by low-frequency turbulence
    Jonathan Squire
    Romain Meyrand
    Matthew W. Kunz
    Lev Arzamasskiy
    Alexander A. Schekochihin
    Eliot Quataert
    Nature Astronomy, 2022, 6 : 715 - 723
  • [8] High-frequency heating of the solar wind triggered by low-frequency turbulence
    Squire, Jonathan
    Meyrand, Romain
    Kunz, Matthew W.
    Arzamasskiy, Lev
    Schekochihin, Alexander A.
    Quataert, Eliot
    NATURE ASTRONOMY, 2022, 6 (06) : 715 - +
  • [9] OBSERVATIONS OF HIGH-FREQUENCY AND HIGH-WAVE-NUMBER SOLAR OSCILLATIONS
    FERNANDES, DN
    SCHERRER, PH
    TARBELL, TD
    TITLE, AM
    ASTROPHYSICAL JOURNAL, 1992, 392 (02): : 736 - 738
  • [10] High-frequency returns, jumps and the mixture of normals hypothesis
    Fleming, Jeff
    Paye, Bradley S.
    JOURNAL OF ECONOMETRICS, 2011, 160 (01) : 119 - 128