Exact solutions for drying with coupled phase-change in a porous medium with a heat flux condition on the surface

被引:0
作者
Santillan Marcus, Eduardo A. [1 ]
Tarzia, Domingo A. [1 ]
机构
[1] Depto. de Matemática and CONICET, FCE, Universidad Austral, Paraguay 1950, Rosario
关键词
Drying; Free boundary; Heat conduction; Mass transfer; Phase change; Porous medium; Stefan problem;
D O I
10.1590/s1807-03022003000300001
中图分类号
学科分类号
摘要
Exact solutions for the problem of drying with coupled phase change in a porous medium with a heat flux condition on x = 0 of the type [Formula presented.], with q0 > 0, for any value of the Luikov number Lu is obtained. This solution can be only obtained when q0 verifies a certain inequality. Besides, for large Luikov number [formula presented], we obtain that the temperature distribution t2 reaches to a minimum value which is smaller than its initial temperature or limit value reached at +∞. © 2003 SBMAC.
引用
收藏
页码:293 / 311
页数:18
相关论文
共 23 条
[1]  
Ali Cherif A., Daif A., Etude numérique du transfert de chaleur et de masse entre deux plaques planes verticales en présence d’un film de liquide binaire ruisselant sur l’une des plaques chauffée, Int. J. Heat and Mass Transfer, 42, pp. 2399-2418, (1999)
[2]  
Le Bray Y., Prat M., Three-dimensional pore network simulation of drying in capillary porous media, Int. J. Heat and Mass Transfer, 42, pp. 4207-4224, (1999)
[3]  
Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, (1959)
[4]  
Chen J., Lin J., Thermocapillary effect on drying of a polymer solution under non-uniform radiant heating, Int. J. Heat and Mass Transfer, 43, pp. 2155-2175, (2000)
[5]  
Cho S.H., An exact solution of the coupled phase change problem in a porous medium, Int. J. Heat and Mass Transfer, 18, pp. 1139-1142, (1975)
[6]  
Cho S.H., Sunderland J.E., Heat conduction problem with melting or freezing, J. Heat. Transfer, 91, pp. 421-426, (1969)
[7]  
Fasano A., Primicerio M., Tarzia D.A., Similarity solutions in class of thawing processes, Math. Models Methods Appl. Sci, 9, pp. 1-10, (1999)
[8]  
Figus C., Le Bray Y., Bories S., Prat M., Heat and mass transfer with phase change in a porous structure partially heated: Continuum model and pore network simulations, Int. J. Heat and Mass Transfer, 42, pp. 2557-2569, (1999)
[9]  
Gonzalez A.M., Tarzia D.A., Determination of unknown coefficients of a semi-infinite material through a simple mushy zone model for the two phase Stefan problem, Int. J. Engng. Sci, 34, pp. 799-817, (1996)
[10]  
Gupta L.N., An approximate solution to the generalized Stefan’s problem in a porous medium, Int. J. Heat Transfer, 17, pp. 313-321, (1974)