On computing the minimum distance of linear codes

被引:0
|
作者
Mohri, Masami [1 ]
Morii, Masakatu [2 ]
机构
[1] Dept. of Mgmt. and Info. Processing, Kagawa Junior College, Kagawa, 769-0201, Japan
[2] Dept. Info. Sci. Intelligent Syst., Faculty of Engineering, University of Tokushima, Tokushima, 770-8506, Japan
来源
Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi) | 2000年 / 83卷 / 11期
关键词
D O I
10.1002/(SICI)1520-6440(200011)83:113.0.CO;2-0
中图分类号
学科分类号
摘要
11
引用
收藏
页码:32 / 42
相关论文
共 50 条
  • [21] Bounds on the Maximal Minimum Distance of Linear Locally Repairable Codes
    Pollanen, Antti
    Westerback, Thomas
    Freij-Hollanti, Ragnar
    Hollanti, Camilla
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1586 - 1590
  • [22] On the minimum average distance of binary codes: linear programming approach
    Fu, FW
    Wei, VK
    Yeung, RW
    DISCRETE APPLIED MATHEMATICS, 2001, 111 (03) : 263 - 281
  • [23] An Efficient method to find the Minimum Distance of Linear Block Codes
    Askali, Mohamed
    Nouh, Said
    Belkasmi, Mostafa
    2012 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2012, : 773 - 779
  • [24] Bounds on minimum distance for linear codes over GF(5)
    Daskalov, RN
    Gulliver, TA
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1999, 9 (06) : 547 - 558
  • [25] CONSTRUCTION OF SOME BINARY LINEAR CODES OF MINIMUM DISTANCE 5
    CHEN, CL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (05) : 1429 - 1432
  • [26] Integer and Semidefinite Programming for the Minimum Distance of Binary Linear Codes
    Dong, Hui
    Bai, Yanqin
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 309 - 312
  • [27] Quasi-perfect linear codes with minimum distance 4
    Giulietti, Massimo
    Pasticci, Fabio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (05) : 1928 - 1935
  • [28] Results on Binary Linear Codes With Minimum Distance 8 and 10
    Bouyukliev, Iliya Georgiev
    Jacobsson, Erik
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 6089 - 6093
  • [29] Bounds on Minimum Distance for Linear Codes over GF(5)
    Rumen N. Daskalov
    T. Aaron Gulliver
    Applicable Algebra in Engineering, Communication and Computing, 1999, 9 : 547 - 558
  • [30] Bounds on minimum distance for linear codes over GF(q)
    Abdullah, Fardos N.
    Yahya, Nada Yassen Kasm
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 894 - 903