On computing the minimum distance of linear codes

被引:0
|
作者
Mohri, Masami [1 ]
Morii, Masakatu [2 ]
机构
[1] Dept. of Mgmt. and Info. Processing, Kagawa Junior College, Kagawa, 769-0201, Japan
[2] Dept. Info. Sci. Intelligent Syst., Faculty of Engineering, University of Tokushima, Tokushima, 770-8506, Japan
来源
Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi) | 2000年 / 83卷 / 11期
关键词
D O I
10.1002/(SICI)1520-6440(200011)83:113.0.CO;2-0
中图分类号
学科分类号
摘要
11
引用
收藏
页码:32 / 42
相关论文
共 50 条
  • [1] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [2] Computing the minimum distance of linear codes by the error impulse method
    Berrou, C
    Vaton, S
    Jézéquel, M
    Douillard, C
    GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 1017 - 1020
  • [3] Minimum distance of linear codes and the α-invariant
    Garrousian, Mehdi
    Tohaneanu, Stefan O.
    ADVANCES IN APPLIED MATHEMATICS, 2015, 71 : 190 - 207
  • [4] Computing the Minimum Distance of Nonbinary LDPC Codes
    Liu, Lei
    Huang, Jie
    Zhou, Wuyang
    Zhou, Shengli
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (07) : 1753 - 1758
  • [5] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [6] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119
  • [7] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [8] Minimum distance decoding algorithms for linear codes
    Barg, A
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 1 - 14
  • [9] Construction of linear codes with large minimum distance
    Braun, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1687 - 1691
  • [10] ALGORITHM FOR COMPUTING MINIMUM PRODUCT DISTANCE OF TCM CODES
    DU, J
    VUCETIC, B
    ELECTRONICS LETTERS, 1992, 28 (01) : 2 - 4