Numerical integration of the interaction energy of two point charges

被引:0
作者
Lab. do Acelerador Linear, Instituto de Fsica, Universidade de São Paulo, C.P. 66.318, CEP 05389-970 São Paulo, Brazil [1 ]
机构
来源
Math Comput Simul | / 1卷 / 13-16期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We calculated numerically the energy interaction of two point charged particles. The integral has simple analytical result but is not easily solved numerically. Commercial programs as Mathematica 3.0 [trademark] and Maple V [trademark] could not evaluate the integral and Gauss-Legendre method gave poor results. The method of Runge-Kutta integration was capable of solving it with good results. This integral showed to be a useful prototype for definite integration for double integration with poles. © 1998 IMACS/Elsevier Science B.V.
引用
收藏
相关论文
共 50 条
[31]   Interaction energy of point vortices [J].
Le, KC ;
Berdichevsky, V .
PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, :742-746
[32]   Genetic-algorithm energy minimization for point charges on a sphere [J].
Morris, JR ;
Deaven, DM ;
Ho, KM .
PHYSICAL REVIEW B, 1996, 53 (04) :R1740-R1743
[33]   GLOBAL ENERGY-MOMENTUM CONSERVATION FOR SCATTERING OF POINT CHARGES [J].
WALKER, M .
PHYSICAL REVIEW LETTERS, 1983, 50 (09) :636-639
[34]   Electrostatic energy of an aggregate of point charges with periodicity in a uniform background [J].
Takemoto, H ;
Tohsaki, A .
PROGRESS OF THEORETICAL PHYSICS, 2004, 111 (02) :213-228
[35]   Minimum-energy distribution of point charges confined to a square [J].
Oymak, Huseyin ;
Alkuwafi, Abdulwahhab .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (05)
[36]   ELECTROMAGNETIC ENERGY AND LINEAR MOMENTUM RADIATED BY 2 POINT CHARGES [J].
AGUIRREGABIRIA, JM ;
BEL, L .
PHYSICAL REVIEW D, 1984, 29 (06) :1099-1106
[37]   Formation energy and interaction of point defects in two-dimensional colloidal crystals [J].
DaSilva, L. C. ;
Candido, L. ;
Costa, L. da F. ;
Oliveira, Osvaldo N., Jr. .
PHYSICAL REVIEW B, 2007, 76 (03)
[38]   Numerical integration formulas of degree two [J].
Xiu, Dongbin .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (10) :1515-1520
[39]   Efficient numerical integration of thermal interaction rates [J].
Jackson, G. ;
Laine, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
[40]   Efficient numerical integration of thermal interaction rates [J].
G. Jackson ;
M. Laine .
Journal of High Energy Physics, 2021