Computation of compressible flow using Runge-Kutta stepping scheme

被引:0
|
作者
Liao, Hongtu [1 ]
机构
[1] Shanghai Jiaotong Univ, Shanghai, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
(Edited Abstract)
引用
收藏
页码:75 / 80
相关论文
共 50 条
  • [31] OPTIMIZING RUNGE-KUTTA SMOOTHERS FOR UNSTEADY FLOW PROBLEMS
    Birken, Philipp
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2012, 39 : 298 - 312
  • [32] RUNGE-KUTTA/IMPLICIT SCHEME FOR THE SOLUTION OF TIME SPECTRAL METHOD
    Ma, Can
    Su, Xinrong
    Gou, Jinlan
    Yuan, Xin
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 2D, 2014,
  • [33] A new minimum storage Runge-Kutta scheme for computational acoustics
    Calvo, M
    Franco, JM
    Rández, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) : 1 - 12
  • [34] Irksome: Automating Runge-Kutta Time-stepping for Finite Element Methods
    Farrell, Patrick E.
    Kirby, Robert C.
    Marchena-Menendez, Jorge
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2021, 47 (04):
  • [35] Symplectic partitioned Runge-Kutta scheme for Maxwell's equations
    Huang, ZX
    Wu, XL
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (04) : 839 - 842
  • [36] Development of a Runge-Kutta scheme with total variation diminishing for magnetogasdynamics
    Damevin, HM
    Hoffmann, KA
    JOURNAL OF SPACECRAFT AND ROCKETS, 2002, 39 (04) : 624 - 632
  • [37] An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method
    Wang, Chunwu
    Shu, Chi-Wang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8823 - 8843
  • [38] Approximation of attractors by a variable time-stepping algorithm for Runge-Kutta methods
    Bazavan, Petre
    NINTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, PROCEEDINGS, 2007, : 111 - 117
  • [39] Optimal embedded pair Runge-Kutta schemes for pseudo-time stepping
    Vermeire, Brian C.
    Loppi, Niki A.
    Vincent, Peter E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [40] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40