Kirchhoff approximation for diffusive waves

被引:51
|
作者
Ripoll, J. [1 ,1 ]
Ntziachristos, V. [1 ,1 ]
Carminati, R. [1 ,1 ]
Nieto-Vesperinas, M. [1 ,1 ]
机构
[1] Inst. for Elec. Structure and Laser, Foundation for Res. Technol.-Hellas, P.O. Box 1527, 71110 Heraklion, Crete, Greece
关键词
Approximation theory - Boundary conditions - Diffusion - Fourier transforms - Green's function - Image analysis - Light modulation - Mathematical models - Refractive index - Spectroscopic analysis;
D O I
10.1103/PhysRevE.64.051917
中图分类号
学科分类号
摘要
An approximate method that solves the 3D diffusion equation in geometries of arbitrary shape and size in a linear fashion is presented. The approximation has been compared to the ET solution of the diffusion equation. It was been found that when the average radius of the geometry considered is R>3(D/μa)1/2, the method performs with an error less than 5%.
引用
收藏
页码:1 / 051917
相关论文
共 50 条
  • [1] Kirchhoff approximation for diffusive waves
    Ripoll, J
    Ntziachristos, V
    Carminati, R
    Nieto-Vesperinas, M
    PHYSICAL REVIEW E, 2001, 64 (05):
  • [2] The Kirchhoff Approximation in diffusive media with arbitrary geometry
    Ripoll, J
    Ntziachristos, V
    Culver, J
    Yodh, AG
    Nieto-Vesperinas, M
    PHOTON MIGRATION, OPTICAL COHERENCE TOMOGRAPHY, AND MICROSCOPY, 2001, 4431 : 134 - 140
  • [3] BEYOND THE KIRCHHOFF APPROXIMATION
    RODRIGUEZ, E
    RADIO SCIENCE, 1989, 24 (05) : 681 - 693
  • [4] Hydrodynamic limits for kinetic equations and the diffusive approximation of radiative transport for acoustic waves
    Portilheiro, Manuel
    Tzavaras, Athanasios E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (02) : 529 - 565
  • [5] Appraising Kirchhoff approximation theory for the scattering of elastic shear waves by randomly rough defects
    Haslinger, Stewart G.
    Lowe, Michael J. S.
    Huthwaite, Peter
    Craster, Richard, V
    Shi, Fan
    JOURNAL OF SOUND AND VIBRATION, 2019, 460
  • [6] Validity of the Kirchhoff approximation for the scattering of electromagnetic waves from dielectric, doubly periodic surfaces
    Franco, M.
    Barber, M.
    Maas, M.
    Bruno, O.
    Grings, F.
    Calzetta, E.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (12) : 2266 - 2277
  • [7] THE KIRCHHOFF APPROXIMATION FOR MAXWELLS EQUATION
    YINGST, D
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (04) : 543 - 562
  • [8] PHASE APPROXIMATION OF THE HUYGENS-KIRCHHOFF METHOD IN PROBLEMS OF REFLECTIONS OF OPTICAL WAVES IN THE TURBULENT ATMOSPHERE
    AKSENOV, VP
    MIRONOV, VL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (11) : 1609 - 1614
  • [9] Fractional diffusive waves
    Mainardi, F
    Paradisi, P
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (04) : 1417 - 1436
  • [10] An approximation to the reflection coefficient of plane longitudinal waves based on the diffusive-viscous wave equation
    Zhao, Haixia
    Gao, Jinghuai
    Peng, Jigen
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 136 : 156 - 164