Dispersion diagrams of bloch modes applied to the design of directive sources

被引:27
作者
Enoch, S. [1 ]
Tayeb, G. [1 ]
Maystre, D. [1 ]
机构
[1] Institut Fresnel, UMR 6133, 13397 Marseille Cedex 20
来源
Progress in Electromagnetics Research | 2003年 / 41卷
关键词
All Open Access; Bronze;
D O I
10.2528/PIER02010803
中图分类号
学科分类号
摘要
We present an original study which makes use of a convenient representation of the dispersion diagrams of Bloch modes for the design of angular selective sources. These diagrams provide us all the pertinent information about the radiative properties of the photonic crystal, and a guideline to optimize the structure in order to obtain the suitable properties. We apply these tools in two cases: when the radiated field propagates normally to the device, and also for an off-axis radiating device. Several numerical examples obtained from a rigorous numerical method show the relevance of this approach.
引用
收藏
页码:61 / 81
页数:20
相关论文
共 30 条
[1]  
Yang H.Y.D., Alexopoulos N.G., Yablonovitch E., Photonic band-gap materials for high-gain printed circuit antennas, IEEE Trans. on Antennas and Propagat., 45, pp. 185-187, (1997)
[2]  
Sigalas M.M., Biswas R., Li Q., Crouch D., Leung W., Jacobs-Woodbury R., Lough B., Nielsen S., McCalmont S., Tuttle G., Ho K.M., Dipole antennas on photonic band-gap crystals-Experiment and simulation, Microwave and Optical Technology Letters, 15, pp. 153-158, (1997)
[3]  
Leung W.Y., Biswas R., Cheng S.D., Sigalas M.M., McCalmont J.S., Tuttle G., Ho K.M., Slot antennas on photonic band gap crystals, IEEE Trans. on Antennas and Propagat., 45, pp. 1569-1570, (1997)
[4]  
Smith G.S., Kesler M.P., Maloney J.G., Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: Gain, field pattern, and input impedance, Microwave and Optical Technology Letters, 21, pp. 191-196, (1999)
[5]  
Sievenpiper D., Zhang L., Jimenez Broas R.F., Alexopoulos N.G., Yablonovitch E., High-impedance electromagnetic surfaces with a forbidden frequency band, IEEE Transactions on Microwave Theory and Techniques, 47, pp. 2059-2074, (1999)
[6]  
Gonzalo R., de Maagt P., Sorolla M., Enhanced patch antenna performance by suppressing surface waves using photonicbandgap substrates, IEEE Transactions on Microwave Theory and Techniques, 47, pp. 2131-2138, (1999)
[7]  
Gonzalo R., Martinez B., de Maagt P., Sorolla M., Improved patch-antenna performance by using photonic-bandgap substrates, Microwave and Optical Technology Letters, 24, pp. 213-215, (2000)
[8]  
Thevenot M., Cheype C., Reinex A., Jecko B., Directive photonic-bandgap antennas, IEEE Transactions on Microwave Theory and Techniques, 47, pp. 2115-2122, (1999)
[9]  
Temelkuran B., Bayindir M., Ozbay E., Biswas R., Sigalas M.M., Tuttle G., Ho K.M., Photonic crystal-based resonant antenna with a very high directivity, Journal of Applied Physics, 87, pp. 603-605, (2000)
[10]  
Ho K.M., Chan C.T., Soukoulis C.M., Existence of photonic gap in periodic dielectric structures, Phys. Rev. Lett., 65, pp. 3152-3155, (1990)