Exponential and nonexponential localization of the one-dimensional periodically kicked Rydberg atom

被引:0
作者
Yoshida, S. [1 ,2 ,4 ]
Reinhold, C.O. [1 ,2 ]
Kristöfel, P. [3 ]
Burgdörfer, J. [1 ,2 ,3 ]
机构
[1] Department of Physics, University of Tennessee, Knoxville, TN 37996-1200, United States
[2] Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, United States
[3] Institute for Theoretical Physics, Vienna University of Technology, A1040 Vienna, Austria
[4] Max Planck Institute, Physics of Complex System, D-01187 Dresden, Germany
来源
Physical Review A - Atomic, Molecular, and Optical Physics | 2000年 / 62卷 / 02期
关键词
Approximation theory - Chaos theory - Diffusion - Monte Carlo methods - One dimensional - Polynomials - Quantum theory;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of different mechanisms of quantum localization of the kicked Rydberg atom within a fully chaotic region in phase space was explored. Suppression of nonresonant diffusion resulted in a localization phenomenon resembling strong Anderson localization. However, direct mapping of the Hamiltonian onto a tight-binding Anderson Hamiltonian was not achieved.
引用
收藏
页码:023408 / 023401
相关论文
empty
未找到相关数据