Thomas-Fermi approximation for Bose-Einstein condensates in traps

被引:0
|
作者
Schuck, P.
Vinas, X.
机构
[1] Inst. des Sciences Nucléaires, Université Joseph Fourier, CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble-Cédex, France
[2] Dept. d'Estructura Constituents M., Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
来源
Physical Review A - Atomic, Molecular, and Optical Physics | 2000年 / 61卷 / 04期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Thomas-Fermi theory for Bose-Einstein condensates in inhomogeneous traps is revisited. The phase-space distribution function of the condensate in the Thomas-Fermi limit ( Plank constant/2π->0) is f0(R,p) varies directly as δ(μ - Hcl) where Hcl is the classical counterpart of the self-consistent Gross-Pitaevskii Hamiltonian. Starting from this distribution function the Thomas-Fermi kinetic energy is calculated for any number of particles. Good agreement between the Gross-Pitaevskii and Thomas-Fermi kinetic energies is found even for low and intermediate particle numbers N. Application of this Thomas-Fermi theory to the attractive case and to the calculation of the frequencies of the monopole and quadrupole excitations in the sum rule approach yields conclusive results as well. The difference with the usual Thomas-Fermi approach to the Bose-Einstein condensates (large-N limit) is discussed in detail.
引用
收藏
页码:436031 / 436031
相关论文
共 50 条