Fatigue crack propagation behaviour of a TiAl-based alloy

被引:0
|
作者
Henaff, G. [1 ]
Mabru, C. [1 ]
Petit, J. [1 ]
机构
[1] ENSMA, Futuroscope, France
来源
Journal De Physique. IV : JP | 1996年 / 6卷 / 02期
关键词
Cracks - Environmental impact - Environmental testing - Fatigue of materials - Intermetallics - Moisture - Stress intensity factors - Titanium alloys - Vacuum;
D O I
暂无
中图分类号
学科分类号
摘要
In the present study the fatigue crack propagation resistance of a nearly fully lamellar quaternary TiAl based is investigated at room-temperature. The fatigue crack growth rates material are shown to be highly sensitive on the applied stress intensity factor amplitude. A special attention is also paid to the influence of extrinsic factors. Thus crack-closure is proved to strongly influence the propagation. As regards environmental effects, ambient air induces fatigue crack growth rates two orders of magnitude higher than those measured in vacuum. The role of moisture in this deleterious effect is discussed.
引用
收藏
页码:247 / 252
相关论文
共 50 条
  • [31] Creep of a cast intermetallic TiAl-based alloy
    Lapin, J
    KOVOVE MATERIALY-METALLIC MATERIALS, 2005, 43 (01): : 81 - 92
  • [32] Superplastic diffusion bonding of γ-TiAl-based alloy
    Wu, GQ
    Huang, Z
    Chen, CQ
    Ruan, ZJ
    Zhang, Y
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 380 (1-2): : 402 - 407
  • [33] Characterization of various interfaces in a TiAl-based alloy
    Gao, Xiangyu
    Wang, Jie
    Feng, Dan
    Yang, Xiubo
    Hu, Rui
    Wu, Yulun
    Gao, Zitong
    Liu, Feng
    MATERIALS CHARACTERIZATION, 2022, 190
  • [34] Microstructure and Mechanical Properties of TiAl-based Alloy
    Zhongjie PU Jiandong SHI Dunxu ZOU Zengyong ZHONG Central Iron and Steel Research Institute
    Journal of Materials Science & Technology, 1993, (06) : 449 - 457
  • [35] Creep, fatigue and crack propagation behavior of a new industrially developed γ-TiAl alloy.
    Lupinc, V
    Marchionni, M
    Nazmy, M
    Onofrio, G
    Staubli, M
    Zhou, LZ
    STRUCTURAL INTERMETALLICS 2001, 2001, : 709 - 716
  • [36] Creep Deformation of Intermetallic TiAl-Based Alloy
    Lapin, J.
    Stanekova, H.
    ACTA PHYSICA POLONICA A, 2012, 122 (03) : 453 - 456
  • [37] Observation of microfracture process of TiAl-based alloy
    Mori, K
    Enoki, M
    Kishi, T
    MATERIALS TRANSACTIONS JIM, 1996, 37 (05): : 1186 - 1189
  • [38] High strain torsion of a TiAl-based alloy
    Cao, G. H.
    Kloeden, B.
    Rybacki, E.
    Oertel, C. -G.
    Skrotzki, W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 483-84 (1-2 C): : 512 - 516
  • [39] Fatigue crack growth resistance in coarse and fine-grained lamellar TiAl-based alloys
    Zhu, D. G.
    Huang, Z. W.
    MULTISCALING ASSOCIATED WITH STRUCTURAL AND MATERIAL INTEGRITY UNDER ELEVATED TEMPERATURE, 2006, : 271 - 276
  • [40] Hot deformation behaviour and microstructure evolution of TiAl-based alloy reinforced with carbide particles
    Lapin, Juraj
    Stamborska, Michaela
    Pelachova, Tatiana
    Cegan, Tomas
    Volodarskaja, Anastasia
    INTERMETALLICS, 2020, 127