Qualitative analysis for the solution of Kuramoto-Sivashinsky equation

被引:0
作者
机构
来源
Appl Math Mech Engl Ed | / 11卷 / 1251-1258期
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   Scaling properties of the Kuramoto-Sivashinsky equation [J].
Li, J ;
Sander, LM .
FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03) :507-514
[32]   Generalized solutions to the Kuramoto-Sivashinsky equation [J].
Biagioni, HA ;
Iorio, RJ .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) :1-8
[33]   Computational study of the Kuramoto-Sivashinsky equation [J].
Smyrlis, YS ;
Papageorgiou, DT .
ADVANCES IN MULTI-FLUID FLOWS, 1996, :426-432
[34]   A note on the Kuramoto-Sivashinsky equation with discontinuity [J].
D'Ambrosio, Lorenzo ;
Gallo, Marco ;
Pugliese, Alessandro .
MATHEMATICS IN ENGINEERING, 2021, 3 (05)
[35]   Feedback control of the Kuramoto-Sivashinsky equation [J].
Armaou, A ;
Christofides, PD .
PHYSICA D, 2000, 137 (1-2) :49-61
[36]   Dynamical bifurcation for the Kuramoto-Sivashinsky equation [J].
Zhang, Yindi ;
Song, Lingyu ;
Axia, Wang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) :1155-1163
[37]   Optimal bounds on the Kuramoto-Sivashinsky equation [J].
Otto, Felix .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) :2188-2245
[38]   A PARTICLE MODEL FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
ROST, M ;
KRUG, J .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (01) :1-13
[39]   Adaptive stabilization of the Kuramoto-Sivashinsky equation [J].
Kobayashi, T .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) :175-180
[40]   ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION [J].
Feudel, Fred ;
Feudel, Ulrike ;
Brandenburg, Axel .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05) :1299-1303