On analytical solutions to boundary-value problems of doubly-curved moderately-thick orthotropic shells

被引:0
|
作者
机构
[1] Chaudhuri, Reaz A.
[2] Kabir, Humayun R.H.
来源
Chaudhuri, Reaz A. | 1600年 / 27期
关键词
Domes and Shells;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] First-order shear deformation theory for orthotropic doubly-curved shells based on a modified couple stress elasticity
    Jouneghani, Farajollah Zare
    Dashtaki, Payam Mohammadi
    Dimitri, Rossana
    Bacciocchi, Michele
    Tornabene, Francesco
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 73 : 129 - 147
  • [42] Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method
    Guo, Jianghua
    Shi, Dongyan
    Wang, Qingshan
    Tang, Jinyuan
    Shuai, Cijun
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 138 : 159 - 186
  • [43] Dynamic analysis of anisotropic doubly-curved shells with general boundary conditions, variable thickness and arbitrary shape
    Tornabene, Francesco
    Viscoti, Matteo
    Dimitri, Rossana
    Rosati, Luciano
    COMPOSITE STRUCTURES, 2023, 309
  • [44] General boundary conditions implementation for the static analysis of anisotropic doubly-curved shells resting on a Winkler foundation
    Tornabene, Francesco
    Viscoti, Matteo
    Dimitri, Rossana
    COMPOSITE STRUCTURES, 2023, 322
  • [45] UNIQUENESS OF SOLUTIONS TO HYPERBOLIC BOUNDARY-VALUE PROBLEMS
    TRAVIS, CC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 216 (FEB) : 327 - 336
  • [46] Limit Theorems for the Solutions of Boundary-Value Problems
    V. A. Mikhailets
    O. B. Pelekhata
    N. V. Reva
    Ukrainian Mathematical Journal, 2018, 70 : 243 - 251
  • [47] LIMIT THEOREMS FOR THE SOLUTIONS OF BOUNDARY-VALUE PROBLEMS
    Mikhailets, V. A.
    Pelekhata, O. B.
    Reva, N. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (02) : 243 - 251
  • [48] Bounded Solutions of Hyperbolic Boundary-Value Problems
    Klyuchnyk R.
    Kmit I.
    Journal of Mathematical Sciences, 2018, 228 (3) : 263 - 275
  • [49] MULTILEVEL ADAPTIVE SOLUTIONS TO BOUNDARY-VALUE PROBLEMS
    BRANDT, A
    MATHEMATICS OF COMPUTATION, 1977, 31 (138) : 333 - 390
  • [50] HYPERPOLYNOMIALS APPROXIMATING SOLUTIONS TO BOUNDARY-VALUE PROBLEMS
    KARTSATO.AG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (05): : 747 - 754