A new algorithm for constructing large Carmichael numbers

被引:0
作者
Loeh, G.
Niebuhr, W.
机构
来源
Mathematics of Computation | / 65卷 / 214期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[31]   On Fibonacci numbers which are elliptic Carmichael [J].
Luca, Florian ;
Stanica, Pantelimon .
PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) :171-179
[32]   Bertrand's Postulate for Carmichael Numbers [J].
Larsen, Daniel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (15) :13072-13098
[33]   There are infinitely many elliptic Carmichael numbers [J].
Wright, Thomas .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (05) :791-800
[34]   On Fibonacci numbers which are elliptic Carmichael [J].
Florian Luca ;
Pantelimon Stănică .
Periodica Mathematica Hungarica, 2016, 72 :171-179
[35]   Elliptic Carmichael numbers and elliptic Korselt criteria [J].
Silverman, Joseph H. .
ACTA ARITHMETICA, 2012, 155 (03) :233-246
[36]   Density of Carmichael numbers with three prime factors [J].
Balasubramanian, R ;
Nagaraj, SV .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1705-1708
[37]   Infinitely many Carmichael numbers in arithmetic progressions [J].
Wright, Thomas .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :943-952
[38]   Two contradictory conjectures concerning Carmichael numbers [J].
Granville, A ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 2002, 71 (238) :883-908
[39]   102.39 Variants of Carmichael numbers and Cunningham chains [J].
Sury, B. .
MATHEMATICAL GAZETTE, 2018, 102 (555) :498-501
[40]   LAWS OF LARGE NUMBERS FOR THE ANNEALING ALGORITHM [J].
GANTERT, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 35 (02) :309-313