A new algorithm for constructing large Carmichael numbers

被引:0
作者
Loeh, G.
Niebuhr, W.
机构
来源
Mathematics of Computation | / 65卷 / 214期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[21]   A CONDITIONAL DENSITY FOR CARMICHAEL NUMBERS [J].
Wright, Thomas .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (03) :379-388
[22]   INFINITUDE OF ELLIPTIC CARMICHAEL NUMBERS [J].
Ekstrom, Aaron ;
Pomerance, Carl ;
Thakur, Dinesh S. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 92 (01) :45-60
[23]   Higher-order Carmichael numbers [J].
Howe, EW .
MATHEMATICS OF COMPUTATION, 2000, 69 (232) :1711-1719
[24]   On Korselt's criterion for Carmichael numbers [J].
Knapp, Wolfgang .
ELEMENTE DER MATHEMATIK, 2013, 68 (03) :93-95
[25]   SOME REMARKS ON THE NUMBERS OF CHERNICK AND CARMICHAEL [J].
SWIFT, JD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) :390-390
[26]   THE CARMICHAEL NUMBERS UP TO 10(15) [J].
PINCH, RGE .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :381-391
[27]   COUNTING CARMICHAEL NUMBERS WITH SMALL SEEDS [J].
Zhang, Zhenxiang .
MATHEMATICS OF COMPUTATION, 2011, 80 (273) :437-442
[28]   On the Counting Function of Elliptic Carmichael Numbers [J].
Luca, Florian ;
Shparlinski, Igor E. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01) :105-112
[29]   THE RECIPROCAL SUMS OF PSEUDOPRIMES AND CARMICHAEL NUMBERS [J].
Kinlaw, Paul .
MATHEMATICS OF COMPUTATION, 2023,
[30]   On the number of Carmichael numbers up to x [J].
Harman, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :641-650