Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses

被引:61
|
作者
Joshi, R.P. [1 ,1 ]
Hu, Q. [1 ,1 ]
Aly, R. [1 ,1 ]
Schoenbach, K.H. [1 ,1 ]
Hjalmarson, H.P. [1 ,1 ]
机构
[1] Dept. of Elec. and Comp. Eng., Old Dominion University, Norfolk, VA 23529-0246, United States
关键词
Bessel functions - Cell membranes - Cells - Computer simulation - Electrophysiology - Hydrophilicity - Hydrophobicity - Mathematical models - Porous materials - Surface tension;
D O I
10.1103/PhysRevE.64.011913
中图分类号
学科分类号
摘要
A self-consistent model analysis of electroporation in biological cells was carried out based on the coupled Laplace-Nernst-Planck-Smoluchowski equations. The physical processes of pore generation, drift, and diffusion in r space were all comprehensively included. A pore-radius-dependent energy barrier to ionic transport accounted for cellular variations. As a result, predictions and qualitative understanding of the cellular response to short, high electric field pulses were obtained.
引用
收藏
页码:1 / 011913
相关论文
共 50 条
  • [41] Self-action dynamics of ultrashort electromagnetic pulses
    Litvak, AG
    Mironov, VA
    Skobelev, SA
    JETP LETTERS, 2005, 82 (03) : 105 - 109
  • [42] Self-action dynamics of ultrashort electromagnetic pulses
    A. G. Litvak
    V. A. Mironov
    S. A. Skobelev
    Journal of Experimental and Theoretical Physics Letters, 2005, 82 : 105 - 109
  • [43] Self-action dynamics of ultrashort electromagnetic pulses
    Balakin, AA
    Mironov, VA
    JETP LETTERS, 2002, 75 (12) : 617 - 620
  • [44] Self-Consistent Set of Lennard–Jones Potential Parameters for Molecular Dynamics Simulations of Oxide Materials
    G. I. Makarov
    K. S. Shilkova
    A. V. Shunailov
    P. V. Pavlov
    T. M. Makarova
    Glass Physics and Chemistry, 2023, 49 : 354 - 363
  • [45] Computational Issues in Modeling Ion Transport in Biological Channels: Self-Consistent Particle-Based Simulations
    S. Aboud
    M. Saraniti
    R. Eisenberg
    Journal of Computational Electronics, 2003, 2 : 239 - 243
  • [46] Computational Issues in Modeling Ion Transport in Biological Channels: Self-Consistent Particle-Based Simulations
    Aboud, S.
    Saraniti, M.
    Eisenberg, R.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2003, 2 (2-4) : 239 - 243
  • [47] Self-consistent propagation of flux ropes in realistic coronal simulations
    Linan, L.
    Regnault, F.
    Perri, B.
    Brchnelova, M.
    Kuzma, B.
    Lani, A.
    Poedts, S.
    Schmieder, B.
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [48] Self-consistent field theory simulations of polymers on arbitrary domains
    Ouaknin, Gaddiel
    Laachi, Nabil
    Delaney, Kris
    Fredrickson, Glenn H.
    Gibou, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 : 168 - 185
  • [49] Heating and cooling in self-consistent many-body simulations
    Yu Y.
    Iskakov S.
    Gull E.
    Physical Review B, 2023, 108 (15)
  • [50] SIMULATIONS OF TOKAMAK DISRUPTIONS INCLUDING SELF-CONSISTENT TEMPERATURE EVOLUTION
    BONDESON, A
    NUCLEAR FUSION, 1986, 26 (07) : 929 - 940