Bubble counting using an inverse acoustic scattering method

被引:0
|
作者
Dynaflow, Inc., 7210 Pindell School Road, Fulton, MD 20759, United States [1 ]
机构
来源
J. Acoust. Soc. Am. | / 5卷 / 2699-2717期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Bubble counting using an inverse acoustic scattering method
    Duraiswami, R
    Prabhukumar, S
    Chahine, GL
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1998, 104 (05): : 2699 - 2717
  • [2] A Method to Determine Bubble Distribution in Liquid Using Data of Inverse Acoustical Scattering
    Amromin, Eduard
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (03):
  • [3] A distributed source method for inverse acoustic scattering
    Angell, TS
    Jiang, XM
    Kleinman, RE
    INVERSE PROBLEMS, 1997, 13 (02) : 531 - 545
  • [4] The method of fundamental solutions for inverse obstacle acoustic scattering
    Karageorghis, A.
    Lesnic, D.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXII, BEM/MRM 2010, 2010, : 193 - 202
  • [5] The factorization method for inverse acoustic scattering in a layered medium
    Bondarenko, Oleksandr
    Kirsch, Andreas
    Liu, Xiaodong
    INVERSE PROBLEMS, 2013, 29 (04)
  • [6] AN OPTIMIZATION METHOD IN INVERSE ACOUSTIC SCATTERING BY AN ELASTIC OBSTACLE
    Elschner, Johannes
    Hsiao, George C.
    Rathsfeld, Andreas
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (01) : 168 - 187
  • [7] A METHOD FOR SOLVING THE INVERSE PROBLEM IN SOFT ACOUSTIC SCATTERING
    JONES, DS
    MAO, XQ
    IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (02) : 127 - 143
  • [8] An inverse method for the acoustic detection, localization and determination of the shape evolution of a bubble
    Gumerov, NA
    Chahine, GL
    INVERSE PROBLEMS, 2000, 16 (06) : 1741 - 1760
  • [9] Assessment of acoustic iterative inverse method for bubble sizing to experimental data
    Choi B.K.
    Kim B.-C.
    Kim B.-N.
    Yoon S.W.
    Ocean Science Journal, 2006, 41 (4) : 195 - 199
  • [10] The factorization method for inverse acoustic scattering by a penetrable anisotropic obstacle
    Kirsch, Andreas
    Liu, Xiaodong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (08) : 1159 - 1170