Efficiently mining Maximal Frequent Sets in dense databases for discovering association rules

被引:0
|
作者
Srikumar, Krishnamoorthy [1 ]
Bhasker, Bharat [1 ]
机构
[1] Indian Institute of Management, Prabandh Nagar, Lucknow, 226 013, India
关键词
Database systems;
D O I
10.3233/ida-2004-8205
中图分类号
学科分类号
摘要
We present, MaxDomino, an algorithm for mining Maximal Frequent Sets (MFS) for discovering association rules in dense databases. The algorithm uses novel concepts of dominancy factor and collapsibility of transaction for efficiently mining MFS. Unlike traditional bottom up approach with look-aheads, MaxDomino employs a top down strategy with selective bottom-up search for mining MFS. Using a set of benchmark dense datasets-created by University of California, Irvine-we demonstrate that MaxDomino outperforms GenMax-that performs better compared to other known algorithms-at higher support levels. Our algorithm is especially efficient for dense databases. © 2004-IOS Press and the authors.
引用
收藏
页码:171 / 182
相关论文
共 50 条
  • [1] Efficiently mining maximal frequent sets for discovering association rules
    Srikumar, K
    Bhasker, B
    SEVENTH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2003, : 104 - 110
  • [2] Discovering Association Rules in Large, Dense Databases
    Teusan, Tudor
    Nachouki, Gilles
    Briand, Henri
    Philippe, Jacques
    LECTURE NOTES IN COMPUTER SCIENCE <D>, 2000, 1910 : 638 - 645
  • [3] Metamorphosis: Mining maximal frequent sets in dense domains
    Srikumar, K
    Bhasker, B
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2005, 14 (03) : 491 - 505
  • [4] Efficiently mining maximal frequent itemsets
    Gouda, K
    Zaki, MJ
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 163 - 170
  • [5] MaxDomino: Efficiently mining maximal sets
    Srikumar, K
    Bhasker, B
    Tripathi, SK
    NEW HORIZONS IN INFORMATION MANAGEMENT, 2003, 2712 : 131 - 139
  • [6] EFFICIENTLY MINING FREQUENT ITEMSETS IN TRANSACTIONAL DATABASES
    Alghyaline, Salah
    Hsieh, Jun-Wei
    Lai, Jim Z. C.
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (02): : 184 - 191
  • [7] Efficiently Mining Maximal Diverse Frequent Itemsets
    Wu, Dingming
    Luo, Dexin
    Jensen, Christian S.
    Huang, Joshua Zhexue
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2019), PT II, 2019, 11447 : 191 - 207
  • [8] Mining Opened Frequent Itemsets to Generate Maximal Boolean Association Rules
    Jiang, Baoqing
    Han, Chong
    Li, Lingsheng
    2009 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING ( GRC 2009), 2009, : 274 - 277
  • [9] Parallel Mining of Fuzzy Association Rules on Dense Data Sets
    Burda, Michal
    Pavliska, Viktor
    Valasek, Radek
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2156 - 2162
  • [10] An Efficient Approach for Mining Association Rules from Sparse and Dense Databases
    Vu, Lan
    Alaghband, Gita
    2014 WORLD CONGRESS ON COMPUTER APPLICATIONS AND INFORMATION SYSTEMS (WCCAIS), 2014,