Exact static deflection of a non-uniform Bernoulli-Euler beam with general elastic end restraints

被引:22
作者
Lee, Sen Yung [1 ]
Ke, Huei Yaw [1 ]
Kuo, Yee Hsiung [1 ]
机构
[1] Natl Cheng Kung Univ, Tainan, Taiwan
关键词
D O I
10.1016/0045-7949(90)90178-5
中图分类号
学科分类号
摘要
引用
收藏
页码:91 / 97
相关论文
共 50 条
  • [41] Closed-form solution for non-uniform Euler-Bernoulli beams and frames
    Molina-Villegas, Juan Camilo
    Ortega, Jorge Eliecer Ballesteros
    Martinez, Giovanni Martinez
    ENGINEERING STRUCTURES, 2023, 292
  • [43] PARAMETRIC-INSTABILITY OF A NON-UNIFORM BEAM WITH THERMAL-GRADIENT AND ELASTIC END SUPPORT
    KAR, RC
    SUJATA, T
    JOURNAL OF SOUND AND VIBRATION, 1988, 122 (02) : 209 - 215
  • [44] Flexural waves in a periodic non-uniform Euler-Bernoulli beam: Analysis for arbitrary contour profiles and applications to wave control
    Li, Peng
    Biwa, Shiro
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 188
  • [45] Isogeometric analysis for non-classical Bernoulli-Euler beam model incorporating microstructure and surface energy effects
    Yin, Shuohui
    Deng, Yang
    Yu, Tiantang
    Gu, Shuitao
    Zhang, Gongye
    APPLIED MATHEMATICAL MODELLING, 2021, 89 : 470 - 485
  • [46] Free Vibration of Non-Uniform Euler-Bernoulli Beams by the Adomian Modified Decomposition Method
    Lai, Hsin-Yi
    Chen, C. K.
    Hsu, Jung-Chang
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 34 (01): : 87 - 115
  • [47] Size-dependent buckling analysis of Euler–Bernoulli nanobeam under non-uniform concentration
    Li, Chenlin
    Tian, Xiaogeng
    He, Tianhu
    Li, Chenlin (liguomechanics@163.com), 1845, Springer Science and Business Media Deutschland GmbH (90): : 1845 - 1860
  • [48] Free vibration analysis of non-uniform Euler–Bernoulli beams by means of Bernstein pseudospectral collocation
    D. Garijo
    Engineering with Computers, 2015, 31 : 813 - 823
  • [49] Size-dependent buckling analysis of Euler–Bernoulli nanobeam under non-uniform concentration
    Chenlin Li
    Xiaogeng Tian
    Tianhu He
    Archive of Applied Mechanics, 2020, 90 : 1845 - 1860
  • [50] Non-stationary localized oscillations of an infinite Bernoulli-Euler beam lying on the Winkler foundation with a point elastic inhomogeneity of time-varying stiffness
    Shishkina, E., V
    Gavrilov, S. N.
    Mochalova, Yu A.
    JOURNAL OF SOUND AND VIBRATION, 2019, 440 : 174 - 185