Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov's direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally, L2 and L∞ stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.