Elementary excitations for solitons of the nonlinear Schroedinger equation

被引:0
作者
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
[21]   SOLUTIONS FOR A NONHOMOGENEOUS NONLINEAR SCHROEDINGER EQUATION WITH DOUBLE POWER NONLINEARITY [J].
Ghimenti, M. ;
Micheletti, A. M. .
DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (10) :1131-1152
[22]   The nonlinear Schrodinger equation with generalized nonlinearities and PT-symmetric potentials: Stable solitons, interactions, and excitations [J].
Yan, Zhenya ;
Chen, Yong .
CHAOS, 2017, 27 (07)
[23]   Existence of solitons in the nonlinear beam equation [J].
Benci, Vieri ;
Fortunato, Donato .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 11 (02) :261-278
[24]   Gaussian solitons in nonlinear Schrodinger equation [J].
Nassar, AB ;
Bassalo, JMF ;
Alencar, PTS ;
de Souza, JF ;
de Oliveira, JE ;
Cattani, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08) :941-946
[25]   Existence of solitons in the nonlinear beam equation [J].
Vieri Benci ;
Donato Fortunato .
Journal of Fixed Point Theory and Applications, 2012, 11 :261-278
[26]   Bragg solitons and the nonlinear Schrodinger equation [J].
de Sterke, CM ;
Eggleton, BJ .
PHYSICAL REVIEW E, 1999, 59 (01) :1267-1269
[27]   Solitons of the generalized nonlinear Schrodinger equation [J].
Tsoy, Eduard N. ;
Suyunov, Laziz A. .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
[28]   Colliding Solitons for the Nonlinear Schrodinger Equation [J].
Abou Salem, W. K. ;
Froehlich, J. ;
Sigal, I. M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) :151-176
[29]   ON THE SYMMETRY OF SCHROEDINGER EQUATION [J].
BAGROV, VG ;
SAMSONOV, BF ;
SHAPOVALOV, AV .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1991, 34 (04) :120-123
[30]   On the Dynamics of Solitons in the Nonlinear Schrodinger Equation [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :467-492