Programmable conductivity of silicon nanowires with side gates by surface charging

被引:0
作者
Matsukawa, Takashi [1 ,2 ]
Kanemaru, Seigo [1 ,2 ]
Masahara, Meishoku [1 ,2 ]
Nagao, Masayoshi [1 ]
Tanoue, Hisao [1 ]
Itoh, Junji [1 ,2 ]
机构
[1] Nanoelectronics Research Institute, AIST, Tsukuba, Ibaraki 305-8568
[2] CREST, Japan Sci. and Technol. Corp. (JST), Kawaguchi-shi, Saitama 332-0012
来源
Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers | 2003年 / 42卷 / 4 B期
关键词
Quantum wires; Semiconductor device measurements; Semiconductor memories; Silicon-on-insulator technology; Surface charging;
D O I
10.1143/jjap.42.2422
中图分类号
学科分类号
摘要
Silicon nanowires with programmable conductivity which utilized sensitivity of conductance to surface charging have been investigated in terms of complementary operation of p- and n-type devices. The device fabricated from a silicon-on-insulator (SOI) wafer consists of a nanowire (width ≈ 30 nm) and side gates for control of surface charging onto the nanowire. The wire current clearly exhibited hysteresis by sweeping the side gate voltage at a constant rate. The transistor characteristics obtained using the SOI substrate as a back gate also exhibited programmable threshold voltage by applying a pulse bias to the side gate. Surface potential imaging of the nanowire by means of scanning Maxwell-stress microscopy (SMM) has been carried out for correlating the programmability to surface charging. The SMM images clearly explained the origin of the programmability and the complementary operation of the p- and n-type nanowires.
引用
收藏
页码:2422 / 2425
页数:3
相关论文
共 9 条
  • [1] Kastner M.A., Rev. Mod. Phys., 64, (1992)
  • [2] Tiwari S., Rana F., Hanafi H., Harstein A., Crabbe E.F., Chan K., Appl. Phys. Lett., 68, (1996)
  • [3] Guo L., Leobandung E., Chou S.Y., Science, 275, (1997)
  • [4] Fujii H., Matsukawa T., Kanemaru S., Yokoyama H., Itoh J., Appl. Phys. Lett., 78, (2001)
  • [5] Matsukawa T., Kanemaru S., Masahara M., Nagao M., Itoh J., Proc. 2001 Int. Semiconductor Device Research Symp., Washington DC, 2001, (2001)
  • [6] Bruel M., Electron. Lett., 31, (1995)
  • [7] Yokoyama H., Inoue T., Thin Solid Films, 242, (1994)
  • [8] Itoh J., Nazuka Y., Kanemaru S., Inoue T., Yokoyama H., Shimizu K., J. Vac. Sci. & Technol., B14, (1996)
  • [9] Nicollian E.H., Brews J.R., MOS (Metal Oxide Semiconductor) Physics and Technology, (1982)