Spectral operators generated by Timoshenko beam model

被引:0
作者
Shubov, Marianna A. [1 ]
机构
[1] Dept. of Mathematics and Statistics, Texas Tech. University, Lubbock, TX 79409, United States
来源
Systems and Control Letters | 1999年 / 38卷 / 4-5期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:249 / 258
相关论文
共 50 条
[21]   UNBOUNDED OPERATORS GENERATED BY A GIVEN SPECTRAL MEASURE [J].
SOUROUR, AR .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 29 (01) :16-22
[22]   Spectral operators generated by damped hyperbolic equations [J].
Marianna A. Shubov .
Integral Equations and Operator Theory, 1997, 28 :358-372
[23]   Spectral analysis of Timoshenko beam with time delay in interior damping [J].
Xiaorui Wang ;
Zhongjie Han ;
Genqi Xu .
Zeitschrift für angewandte Mathematik und Physik, 2019, 70
[24]   Spectral analysis for the transverse vibration of an axially moving Timoshenko beam [J].
Lee, U ;
Kim, JH ;
Oh, HM .
JOURNAL OF SOUND AND VIBRATION, 2004, 271 (3-5) :685-703
[25]   Spectral analysis of Timoshenko beam with time delay in interior damping [J].
Wang, Xiaorui ;
Han, Zhongjie ;
Xu, Genqi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (02)
[26]   Spectral analysis of a non-homogeneous rotating Timoshenko beam [J].
Akian, Jean-Luc .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (03) :422-449
[27]   The dynamic analysis of a cracked Timoshenko beam by the spectral element method [J].
Krawczuk, M ;
Palacz, M ;
Ostachowicz, W .
JOURNAL OF SOUND AND VIBRATION, 2003, 264 (05) :1139-1153
[28]   Stabilization and observability of a rotating timoshenko beam model [J].
Zuyev, Alexander ;
Sawodny, Oliver .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2007, 2007
[29]   On a strain gradient elastic Timoshenko beam model [J].
Lazopoulos, K. A. ;
Lazopoulos, A. K. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (11) :875-882
[30]   Viscous damage model for Timoshenko beam structures [J].
Barbat, AH ;
Oller, S ;
Onate, E ;
Hanganu, A .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1997, 34 (30) :3953-3976