Simple scheme for the finite element solution of a pure advection equation

被引:0
|
作者
Chuo Univ, Tokyo, Japan [1 ]
机构
来源
Comput Mech | / 3卷 / 308-316期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] STABILITY AND PHASE SPEED FOR VARIOUS FINITE-ELEMENT FORMULATIONS OF THE ADVECTION EQUATION
    NETA, B
    WILLIAMS, RT
    COMPUTERS & FLUIDS, 1986, 14 (04) : 393 - 410
  • [42] Finite element and isogeometric stabilized methods for the advection-diffusion-reaction equation
    Key, Konstantin
    Abdelmalik, Michael R. A.
    Elgeti, Stefanie
    Hughes, Thomas J. R.
    Baidoo, Frimpong A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [43] Least-squares finite element method for the advection-diffusion equation
    Dag, I
    Irk, D
    Tombul, M
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) : 554 - 565
  • [44] A simple but accurate explicit finite difference method for the advection-diffusion equation
    Sanjaya, Febi
    Mungkasi, Sudi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE 2017, 2017, 909
  • [45] Time-line cubic spline interpolation scheme for solution of advection equation
    Ahmad, Z
    Kothyari, UC
    COMPUTERS & FLUIDS, 2001, 30 (06) : 737 - 752
  • [46] A time adaptive scheme for the solution of the advection equation in the presence of a transient flow velocity
    Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Que. H3A 2K6, Canada
    CMES Comput. Model. Eng. Sci., 2006, 1 (41-53):
  • [47] Numerical solution of advection–diffusion type equation by modified error correction scheme
    Soyoon Bak
    Philsu Kim
    Xiangfan Piao
    Sunyoung Bu
    Advances in Difference Equations, 2018
  • [48] Time adaptive scheme for the solution of the advection equation in the presence of a transient flow velocity
    Selvadurai, A. P. S.
    Dong, Wenjun
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 12 (01): : 41 - 53
  • [49] A simple impedance-infinite element for the finite element solution of the three-dimensional wave equation in unbounded domains
    Kallivokas, LF
    Bielak, J
    MacCamy, RC
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 147 (3-4) : 235 - 262
  • [50] SOLUTION OF THE ADVECTION DIFFUSION EQUATION USING THE SPLINE FUNCTION AND FINITE-ELEMENTS
    SZYMKIEWICZ, R
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (03): : 197 - 206