NETWORK MODELS FOR TWO-PHASE FLOW IN POROUS MEDIA. PART 1. IMMISCIBLE MICRODISPLACEMENT OF NON-WETTING FLUIDS.

被引:0
|
作者
Dias, Madalena M. [1 ]
Payatakes, Alkiviades C. [1 ]
机构
[1] Schlumberger-Doll Research,, Ridgefield, CT, USA, Schlumberger-Doll Research, Ridgefield, CT, USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:305 / 336
相关论文
共 50 条
  • [31] Scaling analysis for two-phase immiscible flow in heterogeneous porous media
    Furtado, F
    Pereira, F
    COMPUTATIONAL & APPLIED MATHEMATICS, 1998, 17 (03): : 237 - 263
  • [32] Homogenization of nonisothermal immiscible incompressible two-phase flow in porous media
    Amaziane, B.
    Jurak, M.
    Pankratov, L.
    Piatnitski, A.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 43 : 192 - 212
  • [33] Stochastic analysis of two-phase immiscible flow in stratified porous media
    Artus, Vincent
    Furtado, Frederico
    Noetinger, Benoit
    Pereira, Felipe
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 153 - 172
  • [34] Homogenization of immiscible compressible two-phase flow in random porous media
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 206 - 223
  • [35] A finite element method for degenerate two-phase flow in porous media. Part II: Convergence
    Girault, Vivette
    Riviere, Beatrice
    Cappanera, Loic
    JOURNAL OF NUMERICAL MATHEMATICS, 2021, 29 (03) : 187 - 219
  • [36] On the Modelling of Immiscible Viscous Fingering in Two-Phase Flow in Porous Media
    K. S. Sorbie
    A. Y. Al Ghafri
    A. Skauge
    E. J. Mackay
    Transport in Porous Media, 2020, 135 : 331 - 359
  • [37] PERTURBATION SOLUTION FOR NON-NEWTONIAN FLUID TWO-PHASE FLOW THROUGH POROUS MEDIA.
    Li Xi
    Guo Shangping
    1987, 3 (01): : 1 - 10
  • [38] Analysis of nonequilibrium effects and flow instability in immiscible two-phase flow in porous media
    Wang, Yuhang
    Aryana, Saman A.
    Furtado, Frederico
    Ginting, Victor
    ADVANCES IN WATER RESOURCES, 2018, 122 : 291 - 303
  • [39] Adaptive heterogeneous multiscale methods for immiscible two-phase flow in porous media
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (01) : 99 - 114
  • [40] Homogenization of coupled immiscible compressible two-phase flow with kinetics in porous media
    Amaziane, B.
    Pankratov, L.
    APPLICABLE ANALYSIS, 2022, 101 (01) : 241 - 262