NETWORK MODELS FOR TWO-PHASE FLOW IN POROUS MEDIA. PART 1. IMMISCIBLE MICRODISPLACEMENT OF NON-WETTING FLUIDS.

被引:0
|
作者
Dias, Madalena M. [1 ]
Payatakes, Alkiviades C. [1 ]
机构
[1] Schlumberger-Doll Research,, Ridgefield, CT, USA, Schlumberger-Doll Research, Ridgefield, CT, USA
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:305 / 336
相关论文
共 50 条
  • [1] NETWORK MODELS FOR 2-PHASE FLOW IN POROUS-MEDIA .1. IMMISCIBLE MICRODISPLACEMENT OF NONWETTING FLUIDS
    DIAS, MM
    PAYATAKES, AC
    JOURNAL OF FLUID MECHANICS, 1986, 164 : 305 - 336
  • [2] Two-Phase Flow in Heterogeneous Porous Media with Non-Wetting Phase Trapping
    Szymkiewicz, Adam
    Helmig, Rainer
    Kuhnke, Hartmut
    TRANSPORT IN POROUS MEDIA, 2011, 86 (01) : 27 - 47
  • [3] Two-Phase Flow in Heterogeneous Porous Media with Non-Wetting Phase Trapping
    Adam Szymkiewicz
    Rainer Helmig
    Hartmut Kuhnke
    Transport in Porous Media, 2011, 86 : 27 - 47
  • [4] Fragmentation and coalescence dynamics of non-wetting blobs during immiscible two-phase flows in porous media
    Talon, L.
    Bouguemari, R.
    Yiotis, A.
    Salin, D.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (09)
  • [5] The role of wetting on the flow of two immiscible fluids in porous media
    Shahmardi, Armin
    Salimi, Salar Zamani
    Tammisola, Outi
    Brandt, Luca
    Rosti, Marco Edoardo
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [6] Characterization of immiscible non-wetting fluids in porous media systems using synchrotron tomography
    Al-Raoush, Riyadh
    Gordon, Courtney
    Robins, Steven
    Richardson, Jasmin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [7] ASYMPTOTIC THEORY OF RESIDUAL NON-WETTING PHASE SATURATION IN POROUS MEDIA.
    Pismen, L.M.
    PCH. Physicochemical hydrodynamics, 1981, 2 (01): : 45 - 53
  • [8] A virtual element method for the two-phase flow of immiscible fluids in porous media
    Berrone, Stefano
    Busetto, Martina
    COMPUTATIONAL GEOSCIENCES, 2022, 26 (01) : 195 - 216
  • [9] A virtual element method for the two-phase flow of immiscible fluids in porous media
    Stefano Berrone
    Martina Busetto
    Computational Geosciences, 2022, 26 : 195 - 216
  • [10] Dynamics of the Water–Oil Front for Two-Phase, Immiscible Flow in Heterogeneous Porous Media. 1 – Stratified Media
    Vincent Artus
    Benoît Nœtinger
    Ludovic Ricard
    Transport in Porous Media, 2004, 56 : 283 - 303